Abstract
We use syntax and the denotational semantics from the entry "Launchbury", where we formalized Launchbury's natural semantics for lazy evaluation.
The functional correctness of Call Arity is proved with regard to that denotational semantics. The operational properties are shown with regard to a small-step semantics akin to Sestoft's mark 1 machine, which we prove to be equivalent to Launchbury's semantics.
We use Christian Urban's Nominal2 package to define our terms and make use of Brian Huffman's HOLCF package for the domain-theoretical aspects of the development.
Change history
[2015-03-16] This entry now builds on top of the Launchbury entry, and the equivalency proof of the natural and the small-step semantics was added.
Depends On
Topics
Related Entries
Theories
- BalancedTraces
- SestoftConf
- Sestoft
- SestoftCorrect
- Arity
- AEnv
- Arity-Nominal
- ArityAnalysisSig
- ArityAnalysisAbinds
- ArityAnalysisSpec
- TrivialArityAnal
- Cardinality-Domain
- CardinalityAnalysisSig
- ConstOn
- CardinalityAnalysisSpec
- ArityAnalysisStack
- NoCardinalityAnalysis
- TransformTools
- AbstractTransform
- EtaExpansion
- EtaExpansionSafe
- ArityStack
- ArityEtaExpansion
- ArityEtaExpansionSafe
- ArityTransform
- ArityConsistent
- ArityTransformSafe
- Set-Cpo
- Env-Set-Cpo
- CoCallGraph
- CoCallAnalysisSig
- AList-Utils-HOLCF
- CoCallGraph-Nominal
- CoCallAnalysisBinds
- ArityAnalysisFix
- CoCallFix
- CoCallAnalysisImpl
- CallArityEnd2End
- SestoftGC
- CardArityTransformSafe
- CoCallAritySig
- CoCallAnalysisSpec
- ArityAnalysisFixProps
- CoCallImplSafe
- List-Interleavings
- TTree
- TTree-HOLCF
- AnalBinds
- TTreeAnalysisSig
- CoCallGraph-TTree
- CoCallImplTTree
- Cardinality-Domain-Lists
- TTreeAnalysisSpec
- CoCallImplTTreeSafe
- TTreeImplCardinality
- TTreeImplCardinalitySafe
- CallArityEnd2EndSafe
- ArityAnalysisCorrDenotational