Two Algorithms Based on Modular Arithmetic: Lattice Basis Reduction and Hermite Normal Form Computation

Ralph Bottesch, Jose Divasón and René Thiemann

12 March 2021


We verify two algorithms for which modular arithmetic plays an essential role: Storjohann's variant of the LLL lattice basis reduction algorithm and Kopparty's algorithm for computing the Hermite normal form of a matrix. To do this, we also formalize some facts about the modulo operation with symmetric range. Our implementations are based on the original papers, but are otherwise efficient. For basis reduction we formalize two versions: one that includes all of the optimizations/heuristics from Storjohann's paper, and one excluding a heuristic that we observed to often decrease efficiency. We also provide a fast, self-contained certifier for basis reduction, based on the efficient Hermite normal form algorithm.
BSD License

Depends On