Session Functional-Automata

Theory AutoProj

(*  Author:     Tobias Nipkow
    Copyright   1998 TUM

Is there an optimal order of arguments for `next'?
Currently we can have laws like `delta A (a#w) = delta A w o delta A a'
Otherwise we could have `acceps A == fin A o delta A (start A)'
and use foldl instead of foldl2.
*)

section "Projection functions for automata"

theory AutoProj
imports Main
begin

definition start :: "'a * 'b * 'c  'a" where "start A = fst A"
definition "next" :: "'a * 'b * 'c  'b" where "next A = fst(snd(A))"
definition fin :: "'a * 'b * 'c  'c" where "fin A = snd(snd(A))"

lemma [simp]: "start(q,d,f) = q"
by(simp add:start_def)

lemma [simp]: "next(q,d,f) = d"
by(simp add:next_def)

lemma [simp]: "fin(q,d,f) = f"
by(simp add:fin_def)

end

Theory DA

(*  Author:     Tobias Nipkow
    Copyright   1998 TUM
*)

section "Deterministic automata"

theory DA
imports AutoProj
begin

type_synonym ('a,'s)da = "'s * ('a  's  's) * ('s  bool)"

definition
 foldl2 :: "('a  'b  'b)  'a list  'b  'b" where
"foldl2 f xs a = foldl (λa b. f b a) a xs"

definition
 delta :: "('a,'s)da  'a list  's  's" where
"delta A = foldl2 (next A)"

definition
 accepts :: "('a,'s)da  'a list  bool" where
"accepts A = (λw. fin A (delta A w (start A)))"

lemma [simp]: "foldl2 f [] a = a  foldl2 f (x#xs) a = foldl2 f xs (f x a)"
by(simp add:foldl2_def)

lemma delta_Nil[simp]: "delta A [] s = s"
by(simp add:delta_def)

lemma delta_Cons[simp]: "delta A (a#w) s = delta A w (next A a s)"
by(simp add:delta_def)

lemma delta_append[simp]:
 "q ys. delta A (xs@ys) q = delta A ys (delta A xs q)"
by(induct xs) simp_all

end

Theory NA

(*  Author:     Tobias Nipkow
    Copyright   1998 TUM
*)

section "Nondeterministic automata"

theory NA
imports AutoProj
begin

type_synonym ('a,'s) na = "'s * ('a  's  's set) * ('s  bool)"

primrec delta :: "('a,'s)na  'a list  's  's set" where
"delta A []    p = {p}" |
"delta A (a#w) p = Union(delta A w ` next A a p)"

definition
 accepts :: "('a,'s)na  'a list  bool" where
"accepts A w = (q  delta A w (start A). fin A q)"

definition
 step :: "('a,'s)na  'a  ('s * 's)set" where
"step A a = {(p,q) . q : next A a p}"

primrec steps :: "('a,'s)na  'a list  ('s * 's)set" where
"steps A [] = Id" |
"steps A (a#w) = step A a  O  steps A w"

lemma steps_append[simp]:
 "steps A (v@w) = steps A v  O  steps A w"
by(induct v, simp_all add:O_assoc)

lemma in_steps_append[iff]:
  "(p,r) : steps A (v@w) = ((p,r) : (steps A v O steps A w))"
apply(rule steps_append[THEN equalityE])
apply blast
done

lemma delta_conv_steps: "p. delta A w p = {q. (p,q) : steps A w}"
by(induct w)(auto simp:step_def)

lemma accepts_conv_steps:
 "accepts A w = (q. (start A,q)  steps A w  fin A q)"
by(simp add: delta_conv_steps accepts_def)

abbreviation
  Cons_syn :: "'a  'a list set  'a list set" (infixr "##" 65) where
  "x ## S  Cons x ` S"

end

Theory NAe

(*  Author:     Tobias Nipkow
    Copyright   1998 TUM
*)

section "Nondeterministic automata with epsilon transitions"

theory NAe
imports NA
begin

type_synonym ('a,'s)nae = "('a option,'s)na"

abbreviation
  eps :: "('a,'s)nae  ('s * 's)set" where
  "eps A  step A None"

primrec steps :: "('a,'s)nae  'a list    ('s * 's)set" where
"steps A [] = (eps A)*" |
"steps A (a#w) = (eps A)* O step A (Some a) O steps A w"

definition
 accepts :: "('a,'s)nae  'a list  bool" where
"accepts A w = (q. (start A,q)  steps A w  fin A q)"

(* not really used:
consts delta :: "('a,'s)nae ⇒ 'a list ⇒ 's ⇒ 's set"
primrec
"delta A [] s = (eps A)* `` {s}"
"delta A (a#w) s = lift(delta A w) (lift(next A (Some a)) ((eps A)* `` {s}))"
*)

lemma steps_epsclosure[simp]: "(eps A)* O steps A w = steps A w"
by (cases w) (simp_all add: O_assoc[symmetric])

lemma in_steps_epsclosure:
  "[| (p,q) : (eps A)*; (q,r) : steps A w |] ==> (p,r) : steps A w"
apply(rule steps_epsclosure[THEN equalityE])
apply blast
done

lemma epsclosure_steps: "steps A w O (eps A)* = steps A w"
apply(induct w)
 apply simp
apply(simp add:O_assoc)
done

lemma in_epsclosure_steps:
  "[| (p,q) : steps A w; (q,r) : (eps A)* |] ==> (p,r) : steps A w"
apply(rule epsclosure_steps[THEN equalityE])
apply blast
done

lemma steps_append[simp]:  "steps A (v@w) = steps A v  O  steps A w"
by(induct v)(simp_all add:O_assoc[symmetric])

lemma in_steps_append[iff]:
  "(p,r) : steps A (v@w) = ((p,r) : (steps A v O steps A w))"
apply(rule steps_append[THEN equalityE])
apply blast
done

(* Equivalence of steps and delta
* Use "(∃x ∈ f ` A. P x) = (∃a∈A. P(f x))" ?? *
Goal "∀p. (p,q) : steps A w = (q : delta A w p)";
by (induct_tac "w" 1);
 by (Simp_tac 1);
by (asm_simp_tac (simpset() addsimps [comp_def,step_def]) 1);
by (Blast_tac 1);
qed_spec_mp "steps_equiv_delta";
*)

end

Theory Automata

(*  Author:     Tobias Nipkow
    Copyright   1998 TUM
*)

section "Conversions between automata"

theory Automata
imports DA NAe
begin

definition
 na2da :: "('a,'s)na  ('a,'s set)da" where
"na2da A = ({start A}, λa Q. Union(next A a ` Q), λQ. qQ. fin A q)"

definition
 nae2da :: "('a,'s)nae  ('a,'s set)da" where
"nae2da A = ({start A},
              λa Q. Union(next A (Some a) ` ((eps A)* `` Q)),
              λQ. p  (eps A)* `` Q. fin A p)"

(*** Equivalence of NA and DA ***)

lemma DA_delta_is_lift_NA_delta:
 "Q. DA.delta (na2da A) w Q = Union(NA.delta A w ` Q)"
by (induct w)(auto simp:na2da_def)

lemma NA_DA_equiv:
  "NA.accepts A w = DA.accepts (na2da A) w"
apply (simp add: DA.accepts_def NA.accepts_def DA_delta_is_lift_NA_delta)
apply (simp add: na2da_def)
done

(*** Direct equivalence of NAe and DA ***)

lemma espclosure_DA_delta_is_steps:
 "Q. (eps A)* `` (DA.delta (nae2da A) w Q) = steps A w `` Q"
apply (induct w)
 apply(simp)
apply (simp add: step_def nae2da_def)
apply (blast)
done

lemma NAe_DA_equiv:
  "DA.accepts (nae2da A) w = NAe.accepts A w"
proof -
  have "Q. fin (nae2da A) Q = (q  (eps A)* `` Q. fin A q)"
    by(simp add:nae2da_def)
  thus ?thesis
    apply(simp add:espclosure_DA_delta_is_steps NAe.accepts_def DA.accepts_def)
    apply(simp add:nae2da_def)
    apply blast
    done
qed

end

Theory RegExp2NA

(*  Author:     Tobias Nipkow
    Copyright   1998 TUM
*)

section "From regular expressions directly to nondeterministic automata"

theory RegExp2NA
imports "Regular-Sets.Regular_Exp" NA
begin

type_synonym 'a bitsNA = "('a,bool list)na"

definition
"atom"  :: "'a  'a bitsNA" where
"atom a = ([True],
            λb s. if s=[True]  b=a then {[False]} else {},
            λs. s=[False])"

definition
 or :: "'a bitsNA  'a bitsNA  'a bitsNA" where
"or = (λ(ql,dl,fl)(qr,dr,fr).
   ([],
    λa s. case s of
            []  (True ## dl a ql)  (False ## dr a qr)
          | left#s  if left then True ## dl a s
                              else False ## dr a s,
    λs. case s of []  (fl ql | fr qr)
                | left#s  if left then fl s else fr s))"

definition
 conc :: "'a bitsNA  'a bitsNA  'a bitsNA" where
"conc = (λ(ql,dl,fl)(qr,dr,fr).
   (True#ql,
    λa s. case s of
            []  {}
          | left#s  if left then (True ## dl a s) 
                                   (if fl s then False ## dr a qr else {})
                              else False ## dr a s,
    λs. case s of []  False | left#s  left  fl s  fr qr | ¬left  fr s))"

definition
 epsilon :: "'a bitsNA" where
"epsilon = ([],λa s. {}, λs. s=[])"

definition
 plus :: "'a bitsNA  'a bitsNA" where
"plus = (λ(q,d,f). (q, λa s. d a s  (if f s then d a q else {}), f))"

definition
 star :: "'a bitsNA  'a bitsNA" where
"star A = or epsilon (plus A)"

primrec rexp2na :: "'a rexp  'a bitsNA" where
"rexp2na Zero       = ([], λa s. {}, λs. False)" |
"rexp2na One        = epsilon" |
"rexp2na(Atom a)    = atom a" |
"rexp2na(Plus r s)  = or (rexp2na r) (rexp2na s)" |
"rexp2na(Times r s) = conc (rexp2na r) (rexp2na s)" |
"rexp2na(Star r)    = star (rexp2na r)"

declare split_paired_all[simp]

(******************************************************)
(*                       atom                         *)
(******************************************************)

lemma fin_atom: "(fin (atom a) q) = (q = [False])"
by(simp add:atom_def)

lemma start_atom: "start (atom a) = [True]"
by(simp add:atom_def)

lemma in_step_atom_Some[simp]:
 "(p,q) : step (atom a) b = (p=[True]  q=[False]  b=a)"
by (simp add: atom_def step_def)

lemma False_False_in_steps_atom:
 "([False],[False]) : steps (atom a) w = (w = [])"
apply (induct "w")
 apply simp
apply (simp add: relcomp_unfold)
done

lemma start_fin_in_steps_atom:
 "(start (atom a), [False]) : steps (atom a) w = (w = [a])"
apply (induct "w")
 apply (simp add: start_atom)
apply (simp add: False_False_in_steps_atom relcomp_unfold start_atom)
done

lemma accepts_atom:
 "accepts (atom a) w = (w = [a])"
by (simp add: accepts_conv_steps start_fin_in_steps_atom fin_atom)

(******************************************************)
(*                      or                            *)
(******************************************************)

(***** lift True/False over fin *****)

lemma fin_or_True[iff]:
 "L R. fin (or L R) (True#p) = fin L p"
by(simp add:or_def)

lemma fin_or_False[iff]:
 "L R. fin (or L R) (False#p) = fin R p"
by(simp add:or_def)

(***** lift True/False over step *****)

lemma True_in_step_or[iff]:
"L R. (True#p,q) : step (or L R) a = (r. q = True#r  (p,r)  step L a)"
apply (simp add:or_def step_def)
apply blast
done

lemma False_in_step_or[iff]:
"L R. (False#p,q) : step (or L R) a = (r. q = False#r  (p,r)  step R a)"
apply (simp add:or_def step_def)
apply blast
done


(***** lift True/False over steps *****)

lemma lift_True_over_steps_or[iff]:
 "p. (True#p,q)steps (or L R) w = (r. q = True # r  (p,r)  steps L w)"
apply (induct "w")
 apply force
apply force
done

lemma lift_False_over_steps_or[iff]:
 "p. (False#p,q)steps (or L R) w = (r. q = False#r  (p,r)steps R w)"
apply (induct "w")
 apply force
apply force
done

(** From the start  **)

lemma start_step_or[iff]:
 "L R. (start(or L R),q) : step(or L R) a = 
         (p. (q = True#p  (start L,p) : step L a) | 
               (q = False#p  (start R,p) : step R a))"
apply (simp add:or_def step_def)
apply blast
done

lemma steps_or:
 "(start(or L R), q) : steps (or L R) w = 
  ( (w = []  q = start(or L R)) | 
    (w  []  (p.  q = True  # p  (start L,p) : steps L w | 
                      q = False # p  (start R,p) : steps R w)))"
apply (case_tac "w")
 apply (simp)
 apply blast
apply (simp)
apply blast
done

lemma fin_start_or[iff]:
 "L R. fin (or L R) (start(or L R)) = (fin L (start L) | fin R (start R))"
by (simp add:or_def)

lemma accepts_or[iff]:
 "accepts (or L R) w = (accepts L w | accepts R w)"
apply (simp add: accepts_conv_steps steps_or)
(* get rid of case_tac: *)
apply (case_tac "w = []")
 apply auto
done

(******************************************************)
(*                      conc                        *)
(******************************************************)

(** True/False in fin **)

lemma fin_conc_True[iff]:
 "L R. fin (conc L R) (True#p) = (fin L p  fin R (start R))"
by(simp add:conc_def)

lemma fin_conc_False[iff]:
 "L R. fin (conc L R) (False#p) = fin R p"
by(simp add:conc_def)


(** True/False in step **)

lemma True_step_conc[iff]:
 "L R. (True#p,q) : step (conc L R) a = 
        ((r. q=True#r  (p,r): step L a) | 
         (fin L p  (r. q=False#r  (start R,r) : step R a)))"
apply (simp add:conc_def step_def)
apply blast
done

lemma False_step_conc[iff]:
 "L R. (False#p,q) : step (conc L R) a = 
       (r. q = False#r  (p,r) : step R a)"
apply (simp add:conc_def step_def)
apply blast
done

(** False in steps **)

lemma False_steps_conc[iff]:
 "p. (False#p,q): steps (conc L R) w = (r. q=False#r  (p,r): steps R w)"
apply (induct "w")
 apply fastforce
apply force
done

(** True in steps **)

lemma True_True_steps_concI:
 "L R p. (p,q) : steps L w  (True#p,True#q) : steps (conc L R) w"
apply (induct "w")
 apply simp
apply simp
apply fast
done

lemma True_False_step_conc[iff]:
 "L R. (True#p,False#q) : step (conc L R) a = 
         (fin L p  (start R,q) : step R a)"
by simp

lemma True_steps_concD[rule_format]:
 "p. (True#p,q) : steps (conc L R) w  
     ((r. (p,r) : steps L w  q = True#r)   
  (u a v. w = u@a#v  
            (r. (p,r) : steps L u  fin L r  
            (s. (start R,s) : step R a  
            (t. (s,t) : steps R v  q = False#t)))))"
apply (induct "w")
 apply simp
apply simp
apply (clarify del:disjCI)
apply (erule disjE)
 apply (clarify del:disjCI)
 apply (erule allE, erule impE, assumption)
 apply (erule disjE)
  apply blast
 apply (rule disjI2)
 apply (clarify)
 apply simp
 apply (rule_tac x = "a#u" in exI)
 apply simp
 apply blast
apply (rule disjI2)
apply (clarify)
apply simp
apply (rule_tac x = "[]" in exI)
apply simp
apply blast
done

lemma True_steps_conc:
 "(True#p,q) : steps (conc L R) w = 
 ((r. (p,r) : steps L w  q = True#r)  
  (u a v. w = u@a#v 
            (r. (p,r) : steps L u  fin L r  
            (s. (start R,s) : step R a  
            (t. (s,t) : steps R v  q = False#t)))))"
by(force dest!: True_steps_concD intro!: True_True_steps_concI)

(** starting from the start **)

lemma start_conc:
  "L R. start(conc L R) = True#start L"
by (simp add:conc_def)

lemma final_conc:
 "L R. fin(conc L R) p = ((fin R (start R)  (s. p = True#s  fin L s)) 
                           (s. p = False#s  fin R s))"
apply (simp add:conc_def split: list.split)
apply blast
done

lemma accepts_conc:
 "accepts (conc L R) w = (u v. w = u@v  accepts L u  accepts R v)"
apply (simp add: accepts_conv_steps True_steps_conc final_conc start_conc)
apply (rule iffI)
 apply (clarify)
 apply (erule disjE)
  apply (clarify)
  apply (erule disjE)
   apply (rule_tac x = "w" in exI)
   apply simp
   apply blast
  apply blast
 apply (erule disjE)
  apply blast
 apply (clarify)
 apply (rule_tac x = "u" in exI)
 apply simp
 apply blast
apply (clarify)
apply (case_tac "v")
 apply simp
 apply blast
apply simp
apply blast
done

(******************************************************)
(*                     epsilon                        *)
(******************************************************)

lemma step_epsilon[simp]: "step epsilon a = {}"
by(simp add:epsilon_def step_def)

lemma steps_epsilon: "((p,q) : steps epsilon w) = (w=[]  p=q)"
by (induct "w") auto

lemma accepts_epsilon[iff]: "accepts epsilon w = (w = [])"
apply (simp add: steps_epsilon accepts_conv_steps)
apply (simp add: epsilon_def)
done

(******************************************************)
(*                       plus                         *)
(******************************************************)

lemma start_plus[simp]: "A. start (plus A) = start A"
by(simp add:plus_def)

lemma fin_plus[iff]: "A. fin (plus A) = fin A"
by(simp add:plus_def)

lemma step_plusI:
  "A. (p,q) : step A a  (p,q) : step (plus A) a"
by(simp add:plus_def step_def)

lemma steps_plusI: "p. (p,q) : steps A w  (p,q)  steps (plus A) w"
apply (induct "w")
 apply simp
apply simp
apply (blast intro: step_plusI)
done

lemma step_plus_conv[iff]:
 "A. (p,r): step (plus A) a = 
       ( (p,r): step A a | fin A p  (start A,r) : step A a )"
by(simp add:plus_def step_def)

lemma fin_steps_plusI:
 "[| (start A,q) : steps A u; u  []; fin A p |] 
 ==> (p,q) : steps (plus A) u"
apply (case_tac "u")
 apply blast
apply simp
apply (blast intro: steps_plusI)
done

(* reverse list induction! Complicates matters for conc? *)
lemma start_steps_plusD[rule_format]:
 "r. (start A,r)  steps (plus A) w 
     (us v. w = concat us @ v  
              (uset us. accepts A u)  
              (start A,r)  steps A v)"
apply (induct w rule: rev_induct)
 apply simp
 apply (rule_tac x = "[]" in exI)
 apply simp
apply simp
apply (clarify)
apply (erule allE, erule impE, assumption)
apply (clarify)
apply (erule disjE)
 apply (rule_tac x = "us" in exI)
 apply (simp)
 apply blast
apply (rule_tac x = "us@[v]" in exI)
apply (simp add: accepts_conv_steps)
apply blast
done

lemma steps_star_cycle[rule_format]:
 "us  []  (u  set us. accepts A u)  accepts (plus A) (concat us)"
apply (simp add: accepts_conv_steps)
apply (induct us rule: rev_induct)
 apply simp
apply (rename_tac u us)
apply simp
apply (clarify)
apply (case_tac "us = []")
 apply (simp)
 apply (blast intro: steps_plusI fin_steps_plusI)
apply (clarify)
apply (case_tac "u = []")
 apply (simp)
 apply (blast intro: steps_plusI fin_steps_plusI)
apply (blast intro: steps_plusI fin_steps_plusI)
done

lemma accepts_plus[iff]:
 "accepts (plus A) w = 
 (us. us  []  w = concat us  (u  set us. accepts A u))"
apply (rule iffI)
 apply (simp add: accepts_conv_steps)
 apply (clarify)
 apply (drule start_steps_plusD)
 apply (clarify)
 apply (rule_tac x = "us@[v]" in exI)
 apply (simp add: accepts_conv_steps)
 apply blast
apply (blast intro: steps_star_cycle)
done

(******************************************************)
(*                       star                         *)
(******************************************************)

lemma accepts_star:
 "accepts (star A) w = (us. (u  set us. accepts A u)  w = concat us)"
apply(unfold star_def)
apply (rule iffI)
 apply (clarify)
 apply (erule disjE)
  apply (rule_tac x = "[]" in exI)
  apply simp
 apply blast
apply force
done

(***** Correctness of r2n *****)

lemma accepts_rexp2na:
 "w. accepts (rexp2na r) w = (w : lang r)"
apply (induct "r")
     apply (simp add: accepts_conv_steps)
    apply simp
   apply (simp add: accepts_atom)
  apply (simp)
 apply (simp add: accepts_conc Regular_Set.conc_def)
apply (simp add: accepts_star in_star_iff_concat subset_iff Ball_def)
done

end

Theory RegExp2NAe

(*  Author:     Tobias Nipkow
    Copyright   1998 TUM
*)

section "From regular expressions to nondeterministic automata with epsilon"

theory RegExp2NAe
imports "Regular-Sets.Regular_Exp" NAe
begin

type_synonym 'a bitsNAe = "('a,bool list)nae"

definition
 epsilon :: "'a bitsNAe" where
"epsilon = ([],λa s. {}, λs. s=[])"

definition
"atom"  :: "'a  'a bitsNAe" where
"atom a = ([True],
            λb s. if s=[True]  b=Some a then {[False]} else {},
            λs. s=[False])"

definition
 or :: "'a bitsNAe  'a bitsNAe  'a bitsNAe" where
"or = (λ(ql,dl,fl)(qr,dr,fr).
   ([],
    λa s. case s of
            []  if a=None then {True#ql,False#qr} else {}
          | left#s  if left then True ## dl a s
                              else False ## dr a s,
    λs. case s of []  False | left#s  if left then fl s else fr s))"

definition
 conc :: "'a bitsNAe  'a bitsNAe  'a bitsNAe" where
"conc = (λ(ql,dl,fl)(qr,dr,fr).
   (True#ql,
    λa s. case s of
            []  {}
          | left#s  if left then (True ## dl a s) 
                                   (if fl s  a=None then {False#qr} else {})
                              else False ## dr a s,
    λs. case s of []  False | left#s  ¬left  fr s))"

definition
 star :: "'a bitsNAe  'a bitsNAe" where
"star = (λ(q,d,f).
   ([],
    λa s. case s of
            []  if a=None then {True#q} else {}
          | left#s  if left then (True ## d a s) 
                                   (if f s  a=None then {True#q} else {})
                              else {},
    λs. case s of []  True | left#s  left  f s))"

primrec rexp2nae :: "'a rexp  'a bitsNAe" where
"rexp2nae Zero       = ([], λa s. {}, λs. False)" |
"rexp2nae One        = epsilon" |
"rexp2nae(Atom a)    = atom a" |
"rexp2nae(Plus r s)  = or   (rexp2nae r) (rexp2nae s)" |
"rexp2nae(Times r s) = conc (rexp2nae r) (rexp2nae s)" |
"rexp2nae(Star r)    = star (rexp2nae r)"

declare split_paired_all[simp]

(******************************************************)
(*                     epsilon                        *)
(******************************************************)

lemma step_epsilon[simp]: "step epsilon a = {}"
by(simp add:epsilon_def step_def)

lemma steps_epsilon: "((p,q) : steps epsilon w) = (w=[]  p=q)"
by (induct "w") auto

lemma accepts_epsilon[simp]: "accepts epsilon w = (w = [])"
apply (simp add: steps_epsilon accepts_def)
apply (simp add: epsilon_def)
done

(******************************************************)
(*                       atom                         *)
(******************************************************)

lemma fin_atom: "(fin (atom a) q) = (q = [False])"
by(simp add:atom_def)

lemma start_atom: "start (atom a) = [True]"
by(simp add:atom_def)

(* Use {x. False} = {}? *)

lemma eps_atom[simp]:
 "eps(atom a) = {}"
by (simp add:atom_def step_def)

lemma in_step_atom_Some[simp]:
 "(p,q) : step (atom a) (Some b) = (p=[True]  q=[False]  b=a)"
by (simp add:atom_def step_def)

lemma False_False_in_steps_atom:
  "([False],[False]) : steps (atom a) w = (w = [])"
apply (induct "w")
 apply (simp)
apply (simp add: relcomp_unfold)
done

lemma start_fin_in_steps_atom:
  "(start (atom a), [False]) : steps (atom a) w = (w = [a])"
apply (induct "w")
 apply (simp add: start_atom rtrancl_empty)
apply (simp add: False_False_in_steps_atom relcomp_unfold start_atom)
done

lemma accepts_atom: "accepts (atom a) w = (w = [a])"
by (simp add: accepts_def start_fin_in_steps_atom fin_atom)


(******************************************************)
(*                      or                            *)
(******************************************************)

(***** lift True/False over fin *****)

lemma fin_or_True[iff]:
 "L R. fin (or L R) (True#p) = fin L p"
by(simp add:or_def)

lemma fin_or_False[iff]:
 "L R. fin (or L R) (False#p) = fin R p"
by(simp add:or_def)

(***** lift True/False over step *****)

lemma True_in_step_or[iff]:
"L R. (True#p,q) : step (or L R) a = (r. q = True#r  (p,r) : step L a)"
apply (simp add:or_def step_def)
apply blast
done

lemma False_in_step_or[iff]:
"L R. (False#p,q) : step (or L R) a = (r. q = False#r  (p,r) : step R a)"
apply (simp add:or_def step_def)
apply blast
done


(***** lift True/False over epsclosure *****)

lemma lemma1a:
 "(tp,tq) : (eps(or L R))*  
 (p. tp = True#p  q. (p,q) : (eps L)*  tq = True#q)"
apply (induct rule:rtrancl_induct)
 apply (blast)
apply (clarify)
apply (simp)
apply (blast intro: rtrancl_into_rtrancl)
done

lemma lemma1b:
 "(tp,tq) : (eps(or L R))*  
 (p. tp = False#p  q. (p,q) : (eps R)*  tq = False#q)"
apply (induct rule:rtrancl_induct)
 apply (blast)
apply (clarify)
apply (simp)
apply (blast intro: rtrancl_into_rtrancl)
done

lemma lemma2a:
 "(p,q) : (eps L)*   (True#p, True#q) : (eps(or L R))*"
apply (induct rule: rtrancl_induct)
 apply (blast)
apply (blast intro: rtrancl_into_rtrancl)
done

lemma lemma2b:
 "(p,q) : (eps R)*   (False#p, False#q) : (eps(or L R))*"
apply (induct rule: rtrancl_induct)
 apply (blast)
apply (blast intro: rtrancl_into_rtrancl)
done

lemma True_epsclosure_or[iff]:
 "(True#p,q) : (eps(or L R))* = (r. q = True#r  (p,r) : (eps L)*)"
by (blast dest: lemma1a lemma2a)

lemma False_epsclosure_or[iff]:
 "(False#p,q) : (eps(or L R))* = (r. q = False#r  (p,r) : (eps R)*)"
by (blast dest: lemma1b lemma2b)

(***** lift True/False over steps *****)

lemma lift_True_over_steps_or[iff]:
 "p. (True#p,q):steps (or L R) w = (r. q = True # r  (p,r):steps L w)"
apply (induct "w")
 apply auto
apply force
done

lemma lift_False_over_steps_or[iff]:
 "p. (False#p,q):steps (or L R) w = (r. q = False#r  (p,r):steps R w)"
apply (induct "w")
 apply auto
apply (force)
done

(***** Epsilon closure of start state *****)

lemma unfold_rtrancl2:
 "R* = Id  (R O R*)"
apply (rule set_eqI)
apply (simp)
apply (rule iffI)
 apply (erule rtrancl_induct)
  apply (blast)
 apply (blast intro: rtrancl_into_rtrancl)
apply (blast intro: converse_rtrancl_into_rtrancl)
done

lemma in_unfold_rtrancl2:
 "(p,q) : R* = (q = p | (r. (p,r) : R  (r,q) : R*))"
apply (rule unfold_rtrancl2[THEN equalityE])
apply (blast)
done

lemmas [iff] = in_unfold_rtrancl2[where ?p = "start(or L R)"] for L R

lemma start_eps_or[iff]:
 "L R. (start(or L R),q) : eps(or L R) = 
       (q = True#start L | q = False#start R)"
by (simp add:or_def step_def)

lemma not_start_step_or_Some[iff]:
 "L R. (start(or L R),q)  step (or L R) (Some a)"
by (simp add:or_def step_def)

lemma steps_or:
 "(start(or L R), q) : steps (or L R) w = 
 ( (w = []  q = start(or L R)) | 
   (p.  q = True  # p  (start L,p) : steps L w | 
         q = False # p  (start R,p) : steps R w) )"
apply (case_tac "w")
 apply (simp)
 apply (blast)
apply (simp)
apply (blast)
done

lemma start_or_not_final[iff]:
 "L R. ¬ fin (or L R) (start(or L R))"
by (simp add:or_def)

lemma accepts_or:
 "accepts (or L R) w = (accepts L w | accepts R w)"
apply (simp add:accepts_def steps_or)
 apply auto
done


(******************************************************)
(*                      conc                          *)
(******************************************************)

(** True/False in fin **)

lemma in_conc_True[iff]:
 "L R. fin (conc L R) (True#p) = False"
by (simp add:conc_def)

lemma fin_conc_False[iff]:
 "L R. fin (conc L R) (False#p) = fin R p"
by (simp add:conc_def)

(** True/False in step **)

lemma True_step_conc[iff]:
 "L R. (True#p,q) : step (conc L R) a = 
       ((r. q=True#r  (p,r): step L a) | 
        (fin L p  a=None  q=False#start R))"
by (simp add:conc_def step_def) (blast)

lemma False_step_conc[iff]:
 "L R. (False#p,q) : step (conc L R) a = 
       (r. q = False#r  (p,r) : step R a)"
by (simp add:conc_def step_def) (blast)

(** False in epsclosure **)

lemma lemma1b':
 "(tp,tq) : (eps(conc L R))*  
  (p. tp = False#p  q. (p,q) : (eps R)*  tq = False#q)"
apply (induct rule: rtrancl_induct)
 apply (blast)
apply (blast intro: rtrancl_into_rtrancl)
done

lemma lemma2b':
 "(p,q) : (eps R)*  (False#p, False#q) : (eps(conc L R))*"
apply (induct rule: rtrancl_induct)
 apply (blast)
apply (blast intro: rtrancl_into_rtrancl)
done

lemma False_epsclosure_conc[iff]:
 "((False # p, q) : (eps (conc L R))*) = 
 (r. q = False # r  (p, r) : (eps R)*)"
apply (rule iffI)
 apply (blast dest: lemma1b')
apply (blast dest: lemma2b')
done

(** False in steps **)

lemma False_steps_conc[iff]:
 "p. (False#p,q): steps (conc L R) w = (r. q=False#r  (p,r): steps R w)"
apply (induct "w")
 apply (simp)
apply (simp)
apply (fast)  (*MUCH faster than blast*)
done

(** True in epsclosure **)

lemma True_True_eps_concI:
 "(p,q): (eps L)*  (True#p,True#q) : (eps(conc L R))*"
apply (induct rule: rtrancl_induct)
 apply (blast)
apply (blast intro: rtrancl_into_rtrancl)
done

lemma True_True_steps_concI:
 "p. (p,q) : steps L w  (True#p,True#q) : steps (conc L R) w"
apply (induct "w")
 apply (simp add: True_True_eps_concI)
apply (simp)
apply (blast intro: True_True_eps_concI)
done

lemma lemma1a':
 "(tp,tq) : (eps(conc L R))*  
 (p. tp = True#p  
  (q. tq = True#q  (p,q) : (eps L)*) | 
  (q r. tq = False#q  (p,r):(eps L)*  fin L r  (start R,q) : (eps R)*))"
apply (induct rule: rtrancl_induct)
 apply (blast)
apply (blast intro: rtrancl_into_rtrancl)
done

lemma lemma2a':
 "(p, q) : (eps L)*  (True#p, True#q) : (eps(conc L R))*"
apply (induct rule: rtrancl_induct)
 apply (blast)
apply (blast intro: rtrancl_into_rtrancl)
done

lemma lem:
 "L R. (p,q) : step R None  (False#p, False#q) : step (conc L R) None"
by(simp add: conc_def step_def)

lemma lemma2b'':
 "(p,q) : (eps R)*  (False#p, False#q) : (eps(conc L R))*"
apply (induct rule: rtrancl_induct)
 apply (blast)
apply (drule lem)
apply (blast intro: rtrancl_into_rtrancl)
done

lemma True_False_eps_concI:
 "L R. fin L p  (True#p, False#start R) : eps(conc L R)"
by(simp add: conc_def step_def)

lemma True_epsclosure_conc[iff]:
 "((True#p,q)  (eps(conc L R))*) = 
 ((r. (p,r)  (eps L)*  q = True#r) 
  (r. (p,r)  (eps L)*  fin L r 
        (s. (start R, s)  (eps R)*  q = False#s)))"
apply (rule iffI)
 apply (blast dest: lemma1a')
apply (erule disjE)
 apply (blast intro: lemma2a')
apply (clarify)
apply (rule rtrancl_trans)
apply (erule lemma2a')
apply (rule converse_rtrancl_into_rtrancl)
apply (erule True_False_eps_concI)
apply (erule lemma2b'')
done

(** True in steps **)

lemma True_steps_concD[rule_format]:
 "p. (True#p,q) : steps (conc L R) w  
     ((r. (p,r) : steps L w  q = True#r)  
      (u v. w = u@v  (r. (p,r)  steps L u  fin L r 
              (s. (start R,s)  steps R v  q = False#s))))"
apply (induct "w")
 apply (simp)
apply (simp)
apply (clarify del: disjCI)
 apply (erule disjE)
 apply (clarify del: disjCI)
 apply (erule disjE)
  apply (clarify del: disjCI)
  apply (erule allE, erule impE, assumption)
  apply (erule disjE)
   apply (blast)
  apply (rule disjI2)
  apply (clarify)
  apply (simp)
  apply (rule_tac x = "a#u" in exI)
  apply (simp)
  apply (blast)
 apply (blast)
apply (rule disjI2)
apply (clarify)
apply (simp)
apply (rule_tac x = "[]" in exI)
apply (simp)
apply (blast)
done

lemma True_steps_conc:
 "(True#p,q)  steps (conc L R) w = 
 ((r. (p,r)  steps L w  q = True#r)  | 
  (u v. w = u@v  (r. (p,r) : steps L u  fin L r  
          (s. (start R,s) : steps R v  q = False#s))))"
by (blast dest: True_steps_concD
    intro: True_True_steps_concI in_steps_epsclosure)

(** starting from the start **)

lemma start_conc:
  "L R. start(conc L R) = True#start L"
by (simp add: conc_def)

lemma final_conc:
 "L R. fin(conc L R) p = (s. p = False#s  fin R s)"
by (simp add:conc_def split: list.split)

lemma accepts_conc:
 "accepts (conc L R) w = (u v. w = u@v  accepts L u  accepts R v)"
apply (simp add: accepts_def True_steps_conc final_conc start_conc)
apply (blast)
done

(******************************************************)
(*                       star                         *)
(******************************************************)

lemma True_in_eps_star[iff]:
 "A. (True#p,q)  eps(star A) = 
     ( (r. q = True#r  (p,r)  eps A)  (fin A p  q = True#start A) )"
by (simp add:star_def step_def) (blast)

lemma True_True_step_starI:
  "A. (p,q) : step A a  (True#p, True#q) : step (star A) a"
by (simp add:star_def step_def)

lemma True_True_eps_starI:
  "(p,r) : (eps A)*  (True#p, True#r) : (eps(star A))*"
apply (induct rule: rtrancl_induct)
 apply (blast)
apply (blast intro: True_True_step_starI rtrancl_into_rtrancl)
done

lemma True_start_eps_starI:
 "A. fin A p  (True#p,True#start A) : eps(star A)"
by (simp add:star_def step_def)

lemma lem':
 "(tp,s) : (eps(star A))*  (p. tp = True#p 
 (r. ((p,r)  (eps A)* 
        (q. (p,q)  (eps A)*  fin A q  (start A,r) : (eps A)*))  
       s = True#r))"
apply (induct rule: rtrancl_induct)
 apply (simp)
apply (clarify)
apply (simp)
apply (blast intro: rtrancl_into_rtrancl)
done

lemma True_eps_star[iff]:
 "((True#p,s)  (eps(star A))*) = 
 (r. ((p,r)  (eps A)* 
        (q. (p,q) : (eps A)*  fin A q  (start A,r) : (eps A)*)) 
       s = True#r)"
apply (rule iffI)
 apply (drule lem')
 apply (blast)
(* Why can't blast do the rest? *)
apply (clarify)
apply (erule disjE)
apply (erule True_True_eps_starI)
apply (clarify)
apply (rule rtrancl_trans)
apply (erule True_True_eps_starI)
apply (rule rtrancl_trans)
apply (rule r_into_rtrancl)
apply (erule True_start_eps_starI)
apply (erule True_True_eps_starI)
done

(** True in step Some **)

lemma True_step_star[iff]:
 "A. (True#p,r)  step (star A) (Some a) =
     (q. (p,q)  step A (Some a)  r=True#q)"
by (simp add:star_def step_def) (blast)


(** True in steps **)

(* reverse list induction! Complicates matters for conc? *)
lemma True_start_steps_starD[rule_format]:
 "rr. (True#start A,rr)  steps (star A) w 
 (us v. w = concat us @ v 
             (uset us. accepts A u) 
             (r. (start A,r)  steps A v  rr = True#r))"
apply (induct w rule: rev_induct)
 apply (simp)
 apply (clarify)
 apply (rule_tac x = "[]" in exI)
 apply (erule disjE)
  apply (simp)
 apply (clarify)
 apply (simp)
apply (simp add: O_assoc[symmetric] epsclosure_steps)
apply (clarify)
apply (erule allE, erule impE, assumption)
apply (clarify)
apply (erule disjE)
 apply (rule_tac x = "us" in exI)
 apply (rule_tac x = "v@[x]" in exI)
 apply (simp add: O_assoc[symmetric] epsclosure_steps)
 apply (blast)
apply (clarify)
apply (rule_tac x = "us@[v@[x]]" in exI)
apply (rule_tac x = "[]" in exI)
apply (simp add: accepts_def)
apply (blast)
done

lemma True_True_steps_starI:
  "p. (p,q) : steps A w  (True#p,True#q) : steps (star A) w"
apply (induct "w")
 apply (simp)
apply (simp)
apply (blast intro: True_True_eps_starI True_True_step_starI)
done

lemma steps_star_cycle:
 "(u  set us. accepts A u) 
 (True#start A,True#start A)  steps (star A) (concat us)"
apply (induct "us")
 apply (simp add:accepts_def)
apply (simp add:accepts_def)
by(blast intro: True_True_steps_starI True_start_eps_starI in_epsclosure_steps)

(* Better stated directly with start(star A)? Loop in star A back to start(star A)?*)
lemma True_start_steps_star:
 "(True#start A,rr) : steps (star A) w = 
 (us v. w = concat us @ v 
             (uset us. accepts A u) 
             (r. (start A,r)  steps A v  rr = True#r))"
apply (rule iffI)
 apply (erule True_start_steps_starD)
apply (clarify)
apply (blast intro: steps_star_cycle True_True_steps_starI)
done

(** the start state **)

lemma start_step_star[iff]:
  "A. (start(star A),r) : step (star A) a = (a=None  r = True#start A)"
by (simp add:star_def step_def)

lemmas epsclosure_start_step_star =
  in_unfold_rtrancl2[where ?p = "start (star A)"] for A

lemma start_steps_star:
 "(start(star A),r) : steps (star A) w = 
 ((w=[]  r= start(star A)) | (True#start A,r) : steps (star A) w)"
apply (rule iffI)
 apply (case_tac "w")
  apply (simp add: epsclosure_start_step_star)
 apply (simp)
 apply (clarify)
 apply (simp add: epsclosure_start_step_star)
 apply (blast)
apply (erule disjE)
 apply (simp)
apply (blast intro: in_steps_epsclosure)
done

lemma fin_star_True[iff]: "A. fin (star A) (True#p) = fin A p"
by (simp add:star_def)

lemma fin_star_start[iff]: "A. fin (star A) (start(star A))"
by (simp add:star_def)

(* too complex! Simpler if loop back to start(star A)? *)
lemma accepts_star:
 "accepts (star A) w = 
 (us. (u  set(us). accepts A u)  (w = concat us))"
apply(unfold accepts_def)
apply (simp add: start_steps_star True_start_steps_star)
apply (rule iffI)
 apply (clarify)
 apply (erule disjE)
  apply (clarify)
  apply (simp)
  apply (rule_tac x = "[]" in exI)
  apply (simp)
 apply (clarify)
 apply (rule_tac x = "us@[v]" in exI)
 apply (simp add: accepts_def)
 apply (blast)
apply (clarify)
apply (rule_tac xs = "us" in rev_exhaust)
 apply (simp)
 apply (blast)
apply (clarify)
apply (simp add: accepts_def)
apply (blast)
done


(***** Correctness of r2n *****)

lemma accepts_rexp2nae:
 "w. accepts (rexp2nae r) w = (w : lang r)"
apply (induct "r")
     apply (simp add: accepts_def)
    apply simp
   apply (simp add: accepts_atom)
  apply (simp add: accepts_or)
 apply (simp add: accepts_conc Regular_Set.conc_def)
apply (simp add: accepts_star in_star_iff_concat subset_iff Ball_def)
done

end

Theory AutoRegExp

(*  Author:     Tobias Nipkow
    Copyright   1998 TUM
*)

section "Combining automata and regular expressions"

theory AutoRegExp
imports Automata RegExp2NA RegExp2NAe
begin

theorem "DA.accepts (na2da(rexp2na r)) w = (w : lang r)"
by (simp add: NA_DA_equiv[THEN sym] accepts_rexp2na)

theorem  "DA.accepts (nae2da(rexp2nae r)) w = (w : lang r)"
by (simp add: NAe_DA_equiv accepts_rexp2nae)

end

Theory MaxPrefix

(*  Author:     Tobias Nipkow
    Copyright   1998 TUM
*)

section "Maximal prefix"

theory MaxPrefix
imports "HOL-Library.Sublist"
begin

definition
 is_maxpref :: "('a list  bool)  'a list  'a list  bool" where
"is_maxpref P xs ys =
 (prefix xs ys  (xs=[]  P xs)  (zs. prefix zs ys  P zs  prefix zs xs))"

type_synonym 'a splitter = "'a list  'a list * 'a list"

definition
 is_maxsplitter :: "('a list  bool)  'a splitter  bool" where
"is_maxsplitter P f =
 (xs ps qs. f xs = (ps,qs) = (xs=ps@qs  is_maxpref P ps xs))"

fun maxsplit :: "('a list  bool)  'a list * 'a list  'a list  'a splitter" where
"maxsplit P res ps []     = (if P ps then (ps,[]) else res)" |
"maxsplit P res ps (q#qs) = maxsplit P (if P ps then (ps,q#qs) else res)
                                     (ps@[q]) qs"

declare if_split[split del]

lemma maxsplit_lemma: "(maxsplit P res ps qs = (xs,ys)) =
  (if us. prefix us qs  P(ps@us) then xs@ys=ps@qs  is_maxpref P xs (ps@qs)
   else (xs,ys)=res)"
proof (induction P res ps qs rule: maxsplit.induct)
  case 1
  thus ?case by (auto simp: is_maxpref_def split: if_splits)
next
  case (2 P res ps q qs)
  show ?case
  proof (cases "us. prefix us qs  P ((ps @ [q]) @ us)")
    case True
    note ex1 = this
    then guess us by (elim exE conjE) note us = this
    hence ex2: "us. prefix us (q # qs)  P (ps @ us)"
      by (intro exI[of _ "q#us"]) auto
    with ex1 and 2 show ?thesis by simp
  next
    case False
    note ex1 = this
    show ?thesis
    proof (cases "us. prefix us (q#qs)  P (ps @ us)")
      case False
      from 2 show ?thesis
        by (simp only: ex1 False) (insert ex1 False, auto simp: prefix_Cons)
    next
      case True
      note ex2 = this
      show ?thesis
      proof (cases "P ps")
        case True
        with 2 have "(maxsplit P (ps, q # qs) (ps @ [q]) qs = (xs, ys))  (xs = ps  ys = q # qs)"
          by (simp only: ex1 ex2) simp_all
        also have "  (xs @ ys = ps @ q # qs  is_maxpref P xs (ps @ q # qs))"
          using ex1 True
          by (auto simp: is_maxpref_def prefix_append prefix_Cons append_eq_append_conv2)
        finally show ?thesis using True by (simp only: ex1 ex2) simp_all
      next
        case False
        with 2 have "(maxsplit P res (ps @ [q]) qs = (xs, ys))  ((xs, ys) = res)"
          by (simp only: ex1 ex2) simp
        also have "  (xs @ ys = ps @ q # qs  is_maxpref P xs (ps @ q # qs))"
          using ex1 ex2 False
          by (auto simp: append_eq_append_conv2 is_maxpref_def prefix_Cons)
        finally show ?thesis
          using False by (simp only: ex1 ex2) simp
      qed
    qed
  qed
qed

declare if_split[split]

lemma is_maxpref_Nil[simp]:
 "¬(us. prefix us xs  P us)  is_maxpref P ps xs = (ps = [])"
  by (auto simp: is_maxpref_def)

lemma is_maxsplitter_maxsplit:
 "is_maxsplitter P (λxs. maxsplit P ([],xs) [] xs)"
  by (auto simp: maxsplit_lemma is_maxsplitter_def)

lemmas maxsplit_eq = is_maxsplitter_maxsplit[simplified is_maxsplitter_def]

end

Theory MaxChop

(*  Author:     Tobias Nipkow
    Copyright   1998 TUM
*)

section "Generic scanner"

theory MaxChop
imports MaxPrefix
begin

type_synonym 'a chopper = "'a list  'a list list * 'a list"

definition
 is_maxchopper :: "('a list  bool)  'a chopper  bool" where
"is_maxchopper P chopper =
 (xs zs yss.
    (chopper(xs) = (yss,zs)) =
    (xs = concat yss @ zs  (ys  set yss. ys  []) 
     (case yss of
        []  is_maxpref P [] xs
      | us#uss  is_maxpref P us xs  chopper(concat(uss)@zs) = (uss,zs))))"

definition
 reducing :: "'a splitter  bool" where
"reducing splitf =
 (xs ys zs. splitf xs = (ys,zs)  ys  []  length zs < length xs)"

function chop :: "'a splitter  'a list  'a list list × 'a list" where
  [simp del]: "chop splitf xs = (if reducing splitf
                      then let pp = splitf xs
                           in if fst pp = [] then ([], xs)
                           else let qq = chop splitf (snd pp)
                                in (fst pp # fst qq, snd qq)
                      else undefined)"
by pat_completeness auto

termination apply (relation "measure (length  snd)")
apply (auto simp: reducing_def)
apply (case_tac "splitf xs")
apply auto
done

lemma chop_rule: "reducing splitf 
  chop splitf xs = (let (pre, post) = splitf xs
                    in if pre = [] then ([], xs)
                       else let (xss, zs) = chop splitf post
                            in (pre # xss,zs))"
apply (simp add: chop.simps)
apply (simp add: Let_def split: prod.split)
done

lemma reducing_maxsplit: "reducing(λqs. maxsplit P ([],qs) [] qs)"
by (simp add: reducing_def maxsplit_eq)

lemma is_maxsplitter_reducing:
 "is_maxsplitter P splitf  reducing splitf"
by(simp add:is_maxsplitter_def reducing_def)

lemma chop_concat[rule_format]: "is_maxsplitter P splitf 
  (yss zs. chop splitf xs = (yss,zs)  xs = concat yss @ zs)"
apply (induct xs rule:length_induct)
apply (simp (no_asm_simp) split del: if_split
            add: chop_rule[OF is_maxsplitter_reducing])
apply (simp add: Let_def is_maxsplitter_def split: prod.split)
done

lemma chop_nonempty: "is_maxsplitter P splitf 
  yss zs. chop splitf xs = (yss,zs)  (ys  set yss. ys  [])"
apply (induct xs rule:length_induct)
apply (simp (no_asm_simp) add: chop_rule is_maxsplitter_reducing)
apply (simp add: Let_def is_maxsplitter_def split: prod.split)
apply (intro allI impI)
apply (rule ballI)
apply (erule exE)
apply (erule allE)
apply auto
done

lemma is_maxchopper_chop:
 assumes prem: "is_maxsplitter P splitf" shows "is_maxchopper P (chop splitf)"
apply(unfold is_maxchopper_def)
apply clarify
apply (rule iffI)
 apply (rule conjI)
  apply (erule chop_concat[OF prem])
 apply (rule conjI)
  apply (erule prem[THEN chop_nonempty[THEN spec, THEN spec, THEN mp]])
 apply (erule rev_mp)
 apply (subst prem[THEN is_maxsplitter_reducing[THEN chop_rule]])
 apply (simp add: Let_def prem[simplified is_maxsplitter_def]
             split: prod.split)
 apply clarify
 apply (rule conjI)
  apply (clarify)
 apply (clarify)
 apply simp
 apply (frule chop_concat[OF prem])
 apply (clarify)
apply (subst prem[THEN is_maxsplitter_reducing, THEN chop_rule])
apply (simp add: Let_def prem[simplified is_maxsplitter_def]
             split: prod.split)
apply (clarify)
apply (rename_tac xs1 ys1 xss1 ys)
apply (simp split: list.split_asm)
 apply (simp add: is_maxpref_def)
 apply (blast intro: prefix_append[THEN iffD2])
apply (rule conjI)
 apply (clarify)
 apply (simp (no_asm_use) add: is_maxpref_def)
 apply (blast intro: prefix_append[THEN iffD2])
apply (clarify)
apply (rename_tac us uss)
apply (subgoal_tac "xs1=us")
 apply simp
apply simp
apply (simp (no_asm_use) add: is_maxpref_def)
apply (blast intro: prefix_append[THEN iffD2] prefix_order.antisym)
done

end

Theory AutoMaxChop

(*  Author:     Tobias Nipkow
    Copyright   1998 TUM
*)

section "Automata based scanner"

theory AutoMaxChop
imports DA MaxChop
begin

primrec auto_split :: "('a,'s)da  's   'a list * 'a list  'a list  'a splitter" where
"auto_split A q res ps []     = (if fin A q then (ps,[]) else res)" |
"auto_split A q res ps (x#xs) =
   auto_split A (next A x q) (if fin A q then (ps,x#xs) else res) (ps@[x]) xs"

definition
 auto_chop :: "('a,'s)da  'a chopper" where
"auto_chop A = chop (λxs. auto_split A (start A) ([],xs) [] xs)"


lemma delta_snoc: "delta A (xs@[y]) q = next A y (delta A xs q)"
by simp

lemma auto_split_lemma:
 "q ps res. auto_split A (delta A ps q) res ps xs =
              maxsplit (λys. fin A (delta A ys q)) res ps xs"
apply (induct xs)
 apply simp
apply (simp add: delta_snoc[symmetric] del: delta_append)
done

lemma auto_split_is_maxsplit:
 "auto_split A (start A) res [] xs = maxsplit (accepts A) res [] xs"
apply (unfold accepts_def)
apply (subst delta_Nil[where ?s = "start A", symmetric])
apply (subst auto_split_lemma)
apply simp
done

lemma is_maxsplitter_auto_split:
 "is_maxsplitter (accepts A) (λxs. auto_split A (start A) ([],xs) [] xs)"
by (simp add: auto_split_is_maxsplit is_maxsplitter_maxsplit)


lemma is_maxchopper_auto_chop:
 "is_maxchopper (accepts A) (auto_chop A)"
apply (unfold auto_chop_def)
apply (rule is_maxchopper_chop)
apply (rule is_maxsplitter_auto_split)
done

end

Theory RegSet_of_nat_DA

(*  Author:     Tobias Nipkow
    Copyright   1998 TUM

To generate a regular expression, the alphabet must be finite.
regexp needs to be supplied with an 'a list for a unique order

add_Atom d i j r a = (if d a i = j then Union r (Atom a) else r)
atoms d i j as = foldl (add_Atom d i j) Empty as

regexp as d i j 0 = (if i=j then Union (Star Empty) (atoms d i j as)
                        else atoms d i j as
*)

section "From deterministic automata to regular sets"

theory RegSet_of_nat_DA
imports "Regular-Sets.Regular_Set" DA
begin

type_synonym 'a nat_next = "'a  nat  nat"

abbreviation
  deltas :: "'a nat_next  'a list  nat  nat" where
  "deltas  foldl2"

primrec trace :: "'a nat_next  nat  'a list  nat list"  where
"trace d i [] = []" |
"trace d i (x#xs) = d x i # trace d (d x i) xs"

(* conversion a la Warshall *)

primrec regset :: "'a nat_next  nat  nat  nat  'a list set" where
"regset d i j 0 = (if i=j then insert [] {[a] | a. d a i = j}
                          else {[a] | a. d a i = j})" |
"regset d i j (Suc k) =
  regset d i j k 
  (regset d i k k) @@ (star(regset d k k k)) @@ (regset d k j k)"

definition
 regset_of_DA :: "('a,nat)da  nat  'a list set" where
"regset_of_DA A k = (j{j. j<k  fin A j}. regset (next A) (start A) j k)"

definition
 bounded :: "'a nat_next  nat  bool" where
"bounded d k = (n. n < k  (x. d x n < k))"

declare
  in_set_butlast_appendI[simp,intro] less_SucI[simp] image_eqI[simp]

(* Lists *)

lemma butlast_empty[iff]:
  "(butlast xs = []) = (case xs of []  True | y#ys  ys=[])"
by (cases xs) simp_all

lemma in_set_butlast_concatI:
 "x:set(butlast xs)  xs:set xss  x:set(butlast(concat xss))"
apply (induct "xss")
 apply simp
apply (simp add: butlast_append del: ball_simps)
apply (rule conjI)
 apply (clarify)
 apply (erule disjE)
  apply (blast)
 apply (subgoal_tac "xs=[]")
  apply simp
 apply (blast)
apply (blast dest: in_set_butlastD)
done

(* Regular sets *)

(* The main lemma:
   how to decompose a trace into a prefix, a list of loops and a suffix.
*)
lemma decompose[rule_format]:
 "i. k  set(trace d i xs)  (pref mids suf.
  xs = pref @ concat mids @ suf 
  deltas d pref i = k  (nset(butlast(trace d i pref)). n  k) 
  (midset mids. (deltas d mid k = k) 
                  (nset(butlast(trace d k mid)). n  k)) 
  (nset(butlast(trace d k suf)). n  k))"
apply (induct "xs")
 apply (simp)
apply (rename_tac a as)
apply (intro strip)
apply (case_tac "d a i = k")
 apply (rule_tac x = "[a]" in exI)
 apply simp
 apply (case_tac "k : set(trace d (d a i) as)")
  apply (erule allE)
  apply (erule impE)
   apply (assumption)
  apply (erule exE)+
  apply (rule_tac x = "pref#mids" in exI)
  apply (rule_tac x = "suf" in exI)
  apply simp
 apply (rule_tac x = "[]" in exI)
 apply (rule_tac x = "as" in exI)
 apply simp
 apply (blast dest: in_set_butlastD)
apply simp
apply (erule allE)
apply (erule impE)
 apply (assumption)
apply (erule exE)+
apply (rule_tac x = "a#pref" in exI)
apply (rule_tac x = "mids" in exI)
apply (rule_tac x = "suf" in exI)
apply simp
done

lemma length_trace[simp]: "i. length(trace d i xs) = length xs"
by (induct "xs") simp_all

lemma deltas_append[simp]:
  "i. deltas d (xs@ys) i = deltas d ys (deltas d xs i)"
by (induct "xs") simp_all

lemma trace_append[simp]:
  "i. trace d i (xs@ys) = trace d i xs @ trace d (deltas d xs i) ys"
by (induct "xs") simp_all

lemma trace_concat[simp]:
 "(xs  set xss. deltas d xs i = i) 
  trace d i (concat xss) = concat (map (trace d i) xss)"
by (induct "xss") simp_all

lemma trace_is_Nil[simp]: "i. (trace d i xs = []) = (xs = [])"
by (case_tac "xs") simp_all

lemma trace_is_Cons_conv[simp]:
 "(trace d i xs = n#ns) =
  (case xs of []  False | y#ys  n = d y i  ns = trace d n ys)"
apply (case_tac "xs")
apply simp_all
apply (blast)
done

lemma set_trace_conv:
 "i. set(trace d i xs) =
  (if xs=[] then {} else insert(deltas d xs i)(set(butlast(trace d i xs))))"
apply (induct "xs")
 apply (simp)
apply (simp add: insert_commute)
done

lemma deltas_concat[simp]:
 "(midset mids. deltas d mid k = k)  deltas d (concat mids) k = k"
by (induct mids) simp_all

lemma lem: "[| n < Suc k; n  k |] ==> n < k"
by arith

lemma regset_spec:
 "i j xs. xs  regset d i j k =
        ((nset(butlast(trace d i xs)). n < k)  deltas d xs i = j)"
apply (induct k)
 apply(simp split: list.split)
 apply(fastforce)
apply (simp add: conc_def)
apply (rule iffI)
 apply (erule disjE)
  apply simp
 apply (erule exE conjE)+
 apply simp
 apply (subgoal_tac
      "(mset(butlast(trace d k xsb)). m < Suc k)  deltas d xsb k = k")
  apply (simp add: set_trace_conv butlast_append ball_Un)
 apply (erule star_induct)
  apply (simp)
 apply (simp add: set_trace_conv butlast_append ball_Un)
apply (case_tac "k : set(butlast(trace d i xs))")
 prefer 2 apply (rule disjI1)
 apply (blast intro:lem)
apply (rule disjI2)
apply (drule in_set_butlastD[THEN decompose])
apply (clarify)
apply (rule_tac x = "pref" in exI)
apply simp
apply (rule conjI)
 apply (rule ballI)
 apply (rule lem)
  prefer 2 apply simp
 apply (drule bspec) prefer 2 apply assumption
 apply simp
apply (rule_tac x = "concat mids" in exI)
apply (simp)
apply (rule conjI)
 apply (rule concat_in_star)
 apply (clarsimp simp: subset_iff)
 apply (rule lem)
  prefer 2 apply simp
 apply (drule bspec) prefer 2 apply assumption
 apply (simp add: image_eqI in_set_butlast_concatI)
apply (rule ballI)
apply (rule lem)
 apply auto
done

lemma trace_below:
 "bounded d k  i. i < k  (nset(trace d i xs). n < k)"
apply (unfold bounded_def)
apply (induct "xs")
 apply simp
apply (simp (no_asm))
apply (blast)
done

lemma regset_below:
 "[| bounded d k; i < k; j < k |] ==>
  regset d i j k = {xs. deltas d xs i = j}"
apply (rule set_eqI)
apply (simp add: regset_spec)
apply (blast dest: trace_below in_set_butlastD)
done

lemma deltas_below:
 "i. bounded d k  i < k  deltas d w i < k"
apply (unfold bounded_def)
apply (induct "w")
 apply simp_all
done

lemma regset_DA_equiv:
 "[| bounded (next A) k; start A < k; j < k |] ==>
  w : regset_of_DA A k = accepts A w"
apply(unfold regset_of_DA_def)
apply (simp cong: conj_cong
            add: regset_below deltas_below accepts_def delta_def)
done

end

Theory Execute

(*  Author:    Lukas Bulwahn, TUM 2011 *)

section ‹Executing Automata and membership of Regular Expressions›

theory Execute
imports AutoRegExp
begin

subsection ‹Example›

definition example_expression
where
  "example_expression = (let r0 = Atom (0::nat); r1 = Atom (1::nat)
     in Times (Star (Plus (Times r1 r1) r0)) (Star (Plus (Times r0 r0) r1)))"

value "NA.accepts (rexp2na example_expression) [0,1,1,0,0,1]"

value "DA.accepts (na2da (rexp2na example_expression)) [0,1,1,0,0,1]"

end

Theory Functional_Automata

theory Functional_Automata
imports AutoRegExp AutoMaxChop RegSet_of_nat_DA Execute
begin

end