The Floyd-Warshall Algorithm for Shortest Paths

Simon Wimmer and Peter Lammich

8 May 2017

Abstract

The Floyd-Warshall algorithm [Flo62, Roy59, War62] is a classic dynamic programming algorithm to compute the length of all shortest paths between any two vertices in a graph (i.e. to solve the all-pairs shortest path problem, or APSP for short). Given a representation of the graph as a matrix of weights M, it computes another matrix M' which represents a graph with the same path lengths and contains the length of the shortest path between any two vertices i and j. This is only possible if the graph does not contain any negative cycles. However, in this case the Floyd-Warshall algorithm will detect the situation by calculating a negative diagonal entry. This entry includes a formalization of the algorithm and of these key properties. The algorithm is refined to an efficient imperative version using the Imperative Refinement Framework.
BSD License

Depends On

Topics

Related Entries

Theories