Fisher's Inequality: Linear Algebraic Proof Techniques for Combinatorics

Chelsea Edmonds and Lawrence C. Paulson

21 April 2022


Linear algebraic techniques are powerful, yet often underrated tools in combinatorial proofs. This formalisation provides a library including matrix representations of incidence set systems, general formal proof techniques for the rank argument and linear bound argument, and finally a formalisation of a number of variations of the well-known Fisher's inequality. We build on our prior work formalising combinatorial design theory using a locale-centric approach, including extensions such as constant intersect designs and dual incidence systems. In addition to Fisher's inequality, we also formalise proofs on other incidence system properties using the incidence matrix representation, such as design existence, dual system relationships and incidence system isomorphisms. This formalisation is presented in the paper "Formalising Fisher's Inequality: Formal Linear Algebraic Techniques in Combinatorics", accepted to ITP 2022.
BSD License

Depends On


Related Entries