Session Complex_Bounded_Operators

Theory Extra_General

section Extra_General› -- General missing things›

theory Extra_General
  imports
    "HOL-Library.Cardinality"
    "HOL-Analysis.Elementary_Topology"
    Jordan_Normal_Form.Conjugate
    "HOL-Analysis.Uniform_Limit"
    "HOL-Library.Set_Algebras"
    "HOL-Types_To_Sets.Types_To_Sets"
begin

subsection ‹Misc›

lemma reals_zero_comparable_iff:
  "(x::complex)  x  0  x  0"
  unfolding complex_is_Real_iff less_eq_complex_def
  by auto

lemma reals_zero_comparable:
  fixes x::complex
  assumes "x"
  shows "x  0  x  0"
  using assms unfolding reals_zero_comparable_iff by assumption

lemma unique_choice: "x. ∃!y. Q x y  ∃!f. x. Q x (f x)"
  apply (auto intro!: choice ext) by metis

lemma sum_single: 
  assumes "finite A"
  assumes "j. j  i  jA  f j = 0"
  shows "sum f A = (if iA then f i else 0)"
  apply (subst sum.mono_neutral_cong_right[where S=A  {i} and h=f])
  using assms by auto

lemma image_set_plus: 
  assumes ‹linear U
  shows U ` (A + B) = U ` A + U ` B
  unfolding image_def set_plus_def
  using assms by (force simp: linear_add)

consts heterogenous_identity :: 'a  'b
overloading heterogenous_identity_id  "heterogenous_identity :: 'a  'a" begin
definition heterogenous_identity_def[simp]: heterogenous_identity_id = id›
end

lemma bdd_above_image_mono:
  assumes x. xS  f x  g x
  assumes ‹bdd_above (g ` S)
  shows ‹bdd_above (f ` S)
  by (smt (verit, ccfv_threshold) assms(1) assms(2) bdd_aboveI2 bdd_above_def order_trans rev_image_eqI)


lemma L2_set_mono2:
  assumes a1: "finite L" and a2: "K  L"
  shows "L2_set f K  L2_set f L"
proof-
  have "(iK. (f i)2)  (iL. (f i)2)"
  proof (rule sum_mono2)
    show "finite L"
      using a1.
    show "K  L"
      using a2.
    show "0  (f b)2"
      if "b  L - K"
      for b :: 'a
      using that
      by simp 
  qed
  hence "sqrt (iK. (f i)2)  sqrt (iL. (f i)2)"
    by (rule real_sqrt_le_mono)
  thus ?thesis
    unfolding L2_set_def.
qed

lemma Sup_real_close:
  fixes e :: real
  assumes "0 < e"
    and S: "bdd_above S" "S  {}"
  shows "xS. Sup S - e < x"
proof -
  have ‹Sup (ereal ` S)  
    by (metis assms(2) bdd_above_def ereal_less_eq(3) less_SUP_iff less_ereal.simps(4) not_le)
  moreover have ‹Sup (ereal ` S)  -
    by (simp add: SUP_eq_iff assms(3))
  ultimately have Sup_bdd: ¦Sup (ereal ` S)¦  
    by auto
  then have x'ereal ` S. Sup (ereal ` S) - ereal e < x'
    apply (rule_tac Sup_ereal_close)
    using assms by auto
  then obtain x where x  S and Sup_x: ‹Sup (ereal ` S) - ereal e < ereal x
    by auto
  have ‹Sup (ereal ` S) = ereal (Sup S)
    using Sup_bdd by (rule ereal_Sup[symmetric])
  with Sup_x have ‹ereal (Sup S - e) < ereal x
    by auto
  then have ‹Sup S - e < x
    by auto
  with x  S show ?thesis
    by auto
qed

text ‹Improved version of @{attribute internalize_sort}: It is not necessary to specify the sort of the type variable.›
attribute_setup internalize_sort' = let
fun find_tvar thm v = let
  val tvars = Term.add_tvars (Thm.prop_of thm) []
  val tv = case find_first (fn (n,sort) => n=v) tvars of
              SOME tv => tv | NONE => raise THM ("Type variable " ^ string_of_indexname v ^ " not found", 0, [thm])
in 
TVar tv
end

fun internalize_sort_attr (tvar:indexname) =
  Thm.rule_attribute [] (fn context => fn thm =>
    (snd (Internalize_Sort.internalize_sort (Thm.ctyp_of (Context.proof_of context) (find_tvar thm tvar)) thm)));
in
  Scan.lift Args.var >> internalize_sort_attr
end
  "internalize a sort"

subsection ‹Not singleton›

class not_singleton =
  assumes not_singleton_card: "x y. x  y"

lemma not_singleton_existence[simp]:
   x::('a::not_singleton). x  t
  using not_singleton_card[where ?'a = 'a] by (metis (full_types))

lemma UNIV_not_singleton[simp]: "(UNIV::_::not_singleton set)  {x}"
  using not_singleton_existence[of x] by blast

lemma UNIV_not_singleton_converse: 
  assumes"x::'a. UNIV  {x}"
  shows "x::'a. y. x  y"
  using assms
  by fastforce 

subclass (in card2) not_singleton
  apply standard using two_le_card
  by (meson card_2_iff' obtain_subset_with_card_n)

subclass (in perfect_space) not_singleton
  apply intro_classes
  by (metis (mono_tags) Collect_cong Collect_mem_eq UNIV_I local.UNIV_not_singleton local.not_open_singleton local.open_subopen)

lemma class_not_singletonI_monoid_add:
  assumes "(UNIV::'a set)  {0}"
  shows "class.not_singleton TYPE('a::monoid_add)"
proof intro_classes
  let ?univ = "UNIV :: 'a set"
  from assms obtain x::'a where "x  0"
    by auto
  thus "x y :: 'a. x  y"
    by auto
qed

lemma not_singleton_vs_CARD_1:
  assumes ¬ class.not_singleton TYPE('a)
  shows ‹class.CARD_1 TYPE('a)
  using assms unfolding class.not_singleton_def class.CARD_1_def
  by (metis (full_types) One_nat_def UNIV_I card.empty card.insert empty_iff equalityI finite.intros(1) insert_iff subsetI)

subsection class‹CARD_1›

context CARD_1 begin

lemma everything_the_same[simp]: "(x::'a)=y"
  by (metis (full_types) UNIV_I card_1_singletonE empty_iff insert_iff local.CARD_1)

lemma CARD_1_UNIV: "UNIV = {x::'a}"
  by (metis (full_types) UNIV_I card_1_singletonE local.CARD_1 singletonD)

lemma CARD_1_ext: "x (a::'a) = y b  x = y"
proof (rule ext)
  show "x t = y t"
    if "x a = y b"
    for t :: 'a
    using that  apply (subst (asm) everything_the_same[where x=a])
    apply (subst (asm) everything_the_same[where x=b])
    by simp
qed 

end

instance unit :: CARD_1
  apply standard by auto

instance prod :: (CARD_1, CARD_1) CARD_1
  apply intro_classes
  by (simp add: CARD_1)

instance "fun" :: (CARD_1, CARD_1) CARD_1
  apply intro_classes
  by (auto simp add: card_fun CARD_1)


lemma enum_CARD_1: "(Enum.enum :: 'a::{CARD_1,enum} list) = [a]"
proof -
  let ?enum = "Enum.enum :: 'a::{CARD_1,enum} list"
  have "length ?enum = 1"
    apply (subst card_UNIV_length_enum[symmetric])
    by (rule CARD_1)
  then obtain b where "?enum = [b]"
    apply atomize_elim
    apply (cases ?enum, auto)
    by (metis length_0_conv length_Cons nat.inject)
  thus "?enum = [a]"
    by (subst everything_the_same[of _ b], simp)
qed



subsection ‹Topology›

lemma cauchy_filter_metricI:
  fixes F :: "'a::metric_space filter"
  assumes "e. e>0  P. eventually P F  (x y. P x  P y  dist x y < e)"
  shows "cauchy_filter F"
proof (unfold cauchy_filter_def le_filter_def, auto)
  fix P :: "'a × 'a  bool"
  assume "eventually P uniformity"
  then obtain e where e: "e > 0" and P: "dist x y < e  P (x, y)" for x y
    unfolding eventually_uniformity_metric by auto

  obtain P' where evP': "eventually P' F" and P'_dist: "P' x  P' y  dist x y < e" for x y
    apply atomize_elim using assms e by auto

  from evP' P'_dist P
  show "eventually P (F ×F F)"
    unfolding eventually_uniformity_metric eventually_prod_filter eventually_filtermap by metis
qed

lemma cauchy_filter_metric_filtermapI:
  fixes F :: "'a filter" and f :: "'a'b::metric_space"
  assumes "e. e>0  P. eventually P F  (x y. P x  P y  dist (f x) (f y) < e)"
  shows "cauchy_filter (filtermap f F)"
proof (rule cauchy_filter_metricI)
  fix e :: real assume e: "e > 0"
  with assms obtain P where evP: "eventually P F" and dist: "P x  P y  dist (f x) (f y) < e" for x y
    by atomize_elim auto
  define P' where "P' y = (x. P x  y = f x)" for y
  have "eventually P' (filtermap f F)"
    unfolding eventually_filtermap P'_def 
    using evP
    by (smt eventually_mono) 
  moreover have "P' x  P' y  dist x y < e" for x y
    unfolding P'_def using dist by metis
  ultimately show "P. eventually P (filtermap f F)  (x y. P x  P y  dist x y < e)"
    by auto
qed


lemma tendsto_add_const_iff:
  ― ‹This is a generalization of Limits.tendsto_add_const_iff›, 
      the only difference is that the sort here is more general.›
  "((λx. c + f x :: 'a::topological_group_add)  c + d) F  (f  d) F"
  using tendsto_add[OF tendsto_const[of c], of f d]
    and tendsto_add[OF tendsto_const[of "-c"], of "λx. c + f x" "c + d"] by auto

lemma finite_subsets_at_top_minus: 
  assumes "AB"
  shows "finite_subsets_at_top (B - A)  filtermap (λF. F - A) (finite_subsets_at_top B)"
proof (rule filter_leI)
  fix P assume "eventually P (filtermap (λF. F - A) (finite_subsets_at_top B))"
  then obtain X where "finite X" and "X  B" 
    and P: "finite Y  X  Y  Y  B  P (Y - A)" for Y
    unfolding eventually_filtermap eventually_finite_subsets_at_top by auto

  hence "finite (X-A)" and "X-A  B - A"
    by auto
  moreover have "finite Y  X-A  Y  Y  B - A  P Y" for Y
    using P[where Y="YX"] ‹finite X X  B
    by (metis Diff_subset Int_Diff Un_Diff finite_Un inf.orderE le_sup_iff sup.orderE sup_ge2)
  ultimately show "eventually P (finite_subsets_at_top (B - A))"
    unfolding eventually_finite_subsets_at_top by meson
qed


lemma finite_subsets_at_top_inter: 
  assumes "AB"
  shows "filtermap (λF. F  A) (finite_subsets_at_top B)  finite_subsets_at_top A"
proof (rule filter_leI)
  show "eventually P (filtermap (λF. F  A) (finite_subsets_at_top B))"
    if "eventually P (finite_subsets_at_top A)"
    for P :: "'a set  bool"
    using that unfolding eventually_filtermap
    unfolding eventually_finite_subsets_at_top
    by (metis Int_subset_iff assms finite_Int inf_le2 subset_trans)
qed


lemma tendsto_principal_singleton:
  shows "(f  f x) (principal {x})"
  unfolding tendsto_def eventually_principal by simp

lemma complete_singleton: 
  "complete {s::'a::uniform_space}"
proof-
  have "F  principal {s} 
         F  bot  cauchy_filter F  F  nhds s" for F
    by (metis eventually_nhds eventually_principal le_filter_def singletonD)
  thus ?thesis
    unfolding complete_uniform
    by simp
qed

subsection ‹Complex numbers›

lemma cmod_Re:
  assumes "x  0"
  shows "cmod x = Re x"
  using assms unfolding less_eq_complex_def cmod_def
  by auto

lemma abs_complex_real[simp]: "abs x  " for x :: complex
  by (simp add: abs_complex_def)

lemma Im_abs[simp]: "Im (abs x) = 0"
  using abs_complex_real complex_is_Real_iff by blast


lemma cnj_x_x: "cnj x * x = (abs x)2"
proof (cases x)
  show "cnj x * x = ¦x¦2"
    if "x = Complex x1 x2"
    for x1 :: real
      and x2 :: real
    using that   by (auto simp: complex_cnj complex_mult abs_complex_def 
        complex_norm power2_eq_square complex_of_real_def)
qed

lemma cnj_x_x_geq0[simp]: "cnj x * x  0"
proof (cases x)
  show "0  cnj x * x"
    if "x = Complex x1 x2"
    for x1 :: real
      and x2 :: real
    using that by (auto simp: complex_cnj complex_mult complex_of_real_def)
qed


subsection ‹List indices and enum›


fun index_of where
  "index_of x [] = (0::nat)"
| "index_of x (y#ys) = (if x=y then 0 else (index_of x ys + 1))"

definition "enum_idx (x::'a::enum) = index_of x (enum_class.enum :: 'a list)"

lemma index_of_length: "index_of x y  length y"
  apply (induction y) by auto

lemma index_of_correct:
  assumes "x  set y"
  shows "y ! index_of x y = x"
  using assms apply (induction y arbitrary: x)
  by auto

lemma enum_idx_correct: 
  "Enum.enum ! enum_idx i = i"
proof-
  have "i  set enum_class.enum"
    using UNIV_enum by blast 
  thus ?thesis
    unfolding enum_idx_def
    using index_of_correct by metis
qed

lemma index_of_bound: 
  assumes "y  []" and "x  set y"
  shows "index_of x y < length y"
  using assms proof(induction y arbitrary: x)
  case Nil
  thus ?case by auto
next
  case (Cons a y)
  show ?case 
  proof(cases "a = x")
    case True
    thus ?thesis by auto
  next
    case False
    moreover have "a  x  index_of x y < length y"
      using Cons.IH Cons.prems(2) by fastforce      
    ultimately show ?thesis by auto
  qed
qed

lemma enum_idx_bound: "enum_idx x < length (Enum.enum :: 'a list)" for x :: "'a::enum"
proof-
  have p1: "False"
    if "(Enum.enum :: 'a list) = []"
  proof-
    have "(UNIV::'a set) = set ([]::'a list)"
      using that UNIV_enum by metis
    also have " = {}"
      by blast
    finally have "(UNIV::'a set) = {}".
    thus ?thesis by simp
  qed    
  have p2: "x  set (Enum.enum :: 'a list)"
    using UNIV_enum by auto
  moreover have "(enum_class.enum::'a list)  []"
    using p2 by auto
  ultimately show ?thesis
    unfolding enum_idx_def     
    using index_of_bound [where x = x and y = "(Enum.enum :: 'a list)"]
    by auto   
qed

lemma index_of_nth:
  assumes "distinct xs"
  assumes "i < length xs"
  shows "index_of (xs ! i) xs = i"
  using assms
  by (metis gr_implies_not_zero index_of_bound index_of_correct length_0_conv nth_eq_iff_index_eq nth_mem)

lemma enum_idx_enum: 
  assumes i < CARD('a::enum)
  shows ‹enum_idx (enum_class.enum ! i :: 'a) = i
  unfolding enum_idx_def apply (rule index_of_nth)
  using assms by (simp_all add: card_UNIV_length_enum enum_distinct)

subsection ‹Filtering lists/sets›

lemma map_filter_map: "List.map_filter f (map g l) = List.map_filter (f o g) l"
proof (induction l)
  show "List.map_filter f (map g []) = List.map_filter (f  g) []"
    by (simp add: map_filter_simps)
  show "List.map_filter f (map g (a # l)) = List.map_filter (f  g) (a # l)"
    if "List.map_filter f (map g l) = List.map_filter (f  g) l"
    for a :: 'c
      and l :: "'c list"
    using that  map_filter_simps(1)
    by (metis comp_eq_dest_lhs list.simps(9))
qed

lemma map_filter_Some[simp]: "List.map_filter (λx. Some (f x)) l = map f l"
proof (induction l)
  show "List.map_filter (λx. Some (f x)) [] = map f []"
    by (simp add: map_filter_simps)
  show "List.map_filter (λx. Some (f x)) (a # l) = map f (a # l)"
    if "List.map_filter (λx. Some (f x)) l = map f l"
    for a :: 'b
      and l :: "'b list"
    using that by (simp add: map_filter_simps(1))
qed

lemma filter_Un: "Set.filter f (x  y) = Set.filter f x  Set.filter f y"
  unfolding Set.filter_def by auto  

lemma Set_filter_unchanged: "Set.filter P X = X" if "x. xX  P x" for P and X :: "'z set"
  using that unfolding Set.filter_def by auto

subsection ‹Maps›

definition "inj_map π = (x y. π x = π y  π x  None  x = y)"

definition "inv_map π = (λy. if Some y  range π then Some (inv π (Some y)) else None)"

lemma inj_map_total[simp]: "inj_map (Some o π) = inj π"
  unfolding inj_map_def inj_def by simp

lemma inj_map_Some[simp]: "inj_map Some"
  by (simp add: inj_map_def)

lemma inv_map_total: 
  assumes "surj π"
  shows "inv_map (Some o π) = Some o inv π"
proof-
  have "(if Some y  range (λx. Some (π x))
          then Some (SOME x. Some (π x) = Some y)
          else None) =
         Some (SOME b. π b = y)"
    if "surj π"
    for y
    using that by auto
  hence  "surj π 
    (λy. if Some y  range (λx. Some (π x))
         then Some (SOME x. Some (π x) = Some y) else None) =
    (λx. Some (SOME xa. π xa = x))"
    by (rule ext) 
  thus ?thesis 
    unfolding inv_map_def o_def inv_def
    using assms by linarith
qed

lemma inj_map_map_comp[simp]: 
  assumes a1: "inj_map f" and a2: "inj_map g" 
  shows "inj_map (f m g)"
  using a1 a2
  unfolding inj_map_def
  by (metis (mono_tags, lifting) map_comp_def option.case_eq_if option.expand)

lemma inj_map_inv_map[simp]: "inj_map (inv_map π)"
proof (unfold inj_map_def, rule allI, rule allI, rule impI, erule conjE)
  fix x y
  assume same: "inv_map π x = inv_map π y"
    and pix_not_None: "inv_map π x  None"
  have x_pi: "Some x  range π" 
    using pix_not_None unfolding inv_map_def apply auto
    by (meson option.distinct(1))
  have y_pi: "Some y  range π" 
    using pix_not_None unfolding same unfolding inv_map_def apply auto
    by (meson option.distinct(1))
  have "inv_map π x = Some (Hilbert_Choice.inv π (Some x))"
    unfolding inv_map_def using x_pi by simp
  moreover have "inv_map π y = Some (Hilbert_Choice.inv π (Some y))"
    unfolding inv_map_def using y_pi by simp
  ultimately have "Hilbert_Choice.inv π (Some x) = Hilbert_Choice.inv π (Some y)"
    using same by simp
  thus "x = y"
    by (meson inv_into_injective option.inject x_pi y_pi)
qed

end

Theory Extra_Vector_Spaces

section Extra_Vector_Spaces› -- Additional facts about vector spaces›

theory Extra_Vector_Spaces
  imports
    "HOL-Analysis.Inner_Product"
    "HOL-Analysis.Euclidean_Space"
    "HOL-Library.Indicator_Function"
    "HOL-Analysis.Topology_Euclidean_Space"
    "HOL-Analysis.Line_Segment"
    Extra_General
begin

subsection ‹Euclidean spaces›

typedef 'a euclidean_space = "UNIV :: ('a  real) set" ..
setup_lifting type_definition_euclidean_space

instantiation euclidean_space :: (type) real_vector begin
lift_definition plus_euclidean_space ::
  "'a euclidean_space  'a euclidean_space  'a euclidean_space"
  is "λf g x. f x + g x" .
lift_definition zero_euclidean_space :: "'a euclidean_space" is "λ_. 0" .
lift_definition uminus_euclidean_space :: 
  "'a euclidean_space  'a euclidean_space" 
  is "λf x. - f x" .
lift_definition minus_euclidean_space :: 
  "'a euclidean_space  'a euclidean_space  'a euclidean_space" 
  is "λf g x. f x - g x".
lift_definition scaleR_euclidean_space :: 
  "real  'a euclidean_space  'a euclidean_space" 
  is "λc f x. c * f x" .
instance
  apply intro_classes
  by (transfer; auto intro: distrib_left distrib_right)+
end

instantiation euclidean_space :: (finite) real_inner begin
lift_definition inner_euclidean_space :: "'a euclidean_space  'a euclidean_space  real"
  is "λf g. xUNIV. f x * g x :: real" .
definition "norm_euclidean_space (x::'a euclidean_space) = sqrt (inner x x)"
definition "dist_euclidean_space (x::'a euclidean_space) y = norm (x-y)"
definition "sgn x = x /R norm x" for x::"'a euclidean_space"
definition "uniformity = (INF e{0<..}. principal {(x::'a euclidean_space, y). dist x y < e})"
definition "open U = (xU. F (x'::'a euclidean_space, y) in uniformity. x' = x  y  U)"
instance
proof intro_classes
  fix x :: "'a euclidean_space"
    and y :: "'a euclidean_space"
    and z :: "'a euclidean_space"
  show "dist (x::'a euclidean_space) y = norm (x - y)"
    and "sgn (x::'a euclidean_space) = x /R norm x"
    and "uniformity = (INF e{0<..}. principal {(x, y). dist (x::'a euclidean_space) y < e})"
    and "open U = (xU. F (x', y) in uniformity. (x'::'a euclidean_space) = x  y  U)"
    and "norm x = sqrt (inner x x)" for U
    unfolding dist_euclidean_space_def norm_euclidean_space_def sgn_euclidean_space_def
      uniformity_euclidean_space_def open_euclidean_space_def
    by simp_all

  show "inner x y = inner y x"
    apply transfer
    by (simp add: mult.commute)
  show "inner (x + y) z = inner x z + inner y z"
  proof transfer
    fix x y z::"'a  real"
    have "(iUNIV. (x i + y i) * z i) = (iUNIV. x i * z i + y i * z i)"
      by (simp add: distrib_left mult.commute)
    thus "(iUNIV. (x i + y i) * z i) = (jUNIV. x j * z j) + (kUNIV. y k * z k)"
      by (subst sum.distrib[symmetric])      
  qed

  show "inner (r *R x) y = r * (inner x y)" for r
  proof transfer
    fix r and x y::"'areal"
    have "(iUNIV. r * x i * y i) = (iUNIV. r * (x i * y i))"
      by (simp add: mult.assoc)
    thus "(iUNIV. r * x i * y i) = r * (jUNIV. x j * y j)"
      by (subst sum_distrib_left)
  qed
  show "0  inner x x"
    apply transfer
    by (simp add: sum_nonneg)
  show "(inner x x = 0) = (x = 0)"
  proof (transfer, rule)
    fix f :: "'a  real"
    assume "(iUNIV. f i * f i) = 0"
    hence "f x * f x = 0" for x
      apply (rule_tac sum_nonneg_eq_0_iff[THEN iffD1, rule_format, where A=UNIV and x=x])
      by auto
    thus "f = (λ_. 0)"
      by auto
  qed auto
qed
end

instantiation euclidean_space :: (finite) euclidean_space begin
lift_definition euclidean_space_basis_vector :: "'a  'a euclidean_space" is
  "λx. indicator {x}" .
definition "Basis_euclidean_space == (euclidean_space_basis_vector ` UNIV)"
instance
proof intro_classes
  fix u :: "'a euclidean_space"
    and v :: "'a euclidean_space"
  show "(Basis::'a euclidean_space set)  {}"
    unfolding Basis_euclidean_space_def by simp
  show "finite (Basis::'a euclidean_space set)"
    unfolding Basis_euclidean_space_def by simp
  show "inner u v = (if u = v then 1 else 0)"
    if "u  Basis" and "v  Basis"
    using that unfolding Basis_euclidean_space_def
    apply transfer apply auto
    by (auto simp: indicator_def)
  show "(vBasis. inner u v = 0) = (u = 0)"
    unfolding Basis_euclidean_space_def
    apply transfer
    by auto
qed
end (* euclidean_space :: (finite) euclidean_space *)

lemma closure_bounded_linear_image_subset_eq:
  assumes f: "bounded_linear f"
  shows "closure (f ` closure S) = closure (f ` S)"
  by (meson closed_closure closure_bounded_linear_image_subset closure_minimal closure_mono closure_subset f image_mono subset_antisym)

lemma not_singleton_real_normed_is_perfect_space[simp]: ‹class.perfect_space (open :: 'a::{not_singleton,real_normed_vector} set  bool)
  apply standard
  by (metis UNIV_not_singleton clopen closed_singleton empty_not_insert)

end

Theory Extra_Ordered_Fields

section Extra_Ordered_Fields› -- Additional facts about ordered fields›

theory Extra_Ordered_Fields
  imports Complex_Main 
    Jordan_Normal_Form.Conjugate (* Defines ordering for complex. We have to use theirs, otherwise there will be conflicts *)
begin


subsection‹Ordered Fields›
text ‹In this section we introduce some type classes for ordered rings/fields/etc.
that are weakenings of existing classes. Most theorems in this section are 
copies of the eponymous theorems from Isabelle/HOL, except that they are now proven 
requiring weaker type classes (usually the need for a total order is removed).

Since the lemmas are identical to the originals except for weaker type constraints, 
we use the same names as for the original lemmas. (In fact, the new lemmas could replace
the original ones in Isabelle/HOL with at most minor incompatibilities.›

subsection ‹Missing from Orderings.thy›

text ‹This class is analogous to class‹unbounded_dense_linorder›, except that it does not require a total order›

class unbounded_dense_order = dense_order + no_top + no_bot

instance unbounded_dense_linorder  unbounded_dense_order ..

subsection ‹Missing from Rings.thy›

text ‹The existing class class‹abs_if› requires term¦a¦ = (if a < 0 then - a else a).
However, if term(<) is not a total order, this condition is too strong when terma 
is incomparable with term0. (Namely, it requires the absolute value to be
the identity on such elements. E.g., the absolute value for complex numbers does not 
satisfy this.) The following class partial_abs_if› is analogous to class‹abs_if›
but does not require anything if terma is incomparable with term0.›


class partial_abs_if = minus + uminus + ord + zero + abs +
  assumes abs_neg: "a  0  abs a = -a"
  assumes abs_pos: "a  0  abs a = a"

class ordered_semiring_1 = ordered_semiring + semiring_1
  ― ‹missing class analogous to class‹linordered_semiring_1› without requiring a total order›
begin

lemma convex_bound_le:
  assumes "x  a" and "y  a" and "0  u" and "0  v" and "u + v = 1"
  shows "u * x + v * y  a"
proof-
  from assms have "u * x + v * y  u * a + v * a"
    by (simp add: add_mono mult_left_mono)
  with assms show ?thesis
    unfolding distrib_right[symmetric] by simp
qed

end

subclass (in linordered_semiring_1) ordered_semiring_1 ..

class ordered_semiring_strict = semiring + comm_monoid_add + ordered_cancel_ab_semigroup_add +
  ― ‹missing class analogous to class‹linordered_semiring_strict› without requiring a total order›
  assumes mult_strict_left_mono: "a < b  0 < c  c * a < c * b"
  assumes mult_strict_right_mono: "a < b  0 < c  a * c < b * c"
begin

subclass semiring_0_cancel ..

subclass ordered_semiring
proof
  fix a b c :: 'a
  assume t1: "a  b" and t2: "0  c"
  thus "c * a  c * b"
    unfolding le_less
    using mult_strict_left_mono by (cases "c = 0") auto
  from t2 show "a * c  b * c"
    unfolding le_less
    by (metis local.antisym_conv2 local.mult_not_zero local.mult_strict_right_mono t1)    
qed

lemma mult_pos_pos[simp]: "0 < a  0 < b  0 < a * b"
  using mult_strict_left_mono [of 0 b a] by simp

lemma mult_pos_neg: "0 < a  b < 0  a * b < 0"
  using mult_strict_left_mono [of b 0 a] by simp

lemma mult_neg_pos: "a < 0  0 < b  a * b < 0"
  using mult_strict_right_mono [of a 0 b] by simp

text ‹Strict monotonicity in both arguments›
lemma mult_strict_mono:
  assumes t1: "a < b" and t2: "c < d" and t3: "0 < b" and t4: "0  c"
  shows "a * c < b * d"
proof-
  have "a * c < b * d"
    by (metis local.dual_order.order_iff_strict local.dual_order.strict_trans2 
        local.mult_strict_left_mono local.mult_strict_right_mono local.mult_zero_right t1 t2 t3 t4)        
  thus ?thesis
    using assms by blast
qed


text ‹This weaker variant has more natural premises›
lemma mult_strict_mono':
  assumes "a < b" and "c < d" and "0  a" and "0  c"
  shows "a * c < b * d"
  by (rule mult_strict_mono) (insert assms, auto)

lemma mult_less_le_imp_less:
  assumes t1: "a < b" and t2: "c  d" and t3: "0  a" and t4: "0 < c"
  shows "a * c < b * d"
  using local.mult_strict_mono' local.mult_strict_right_mono local.order.order_iff_strict 
    t1 t2 t3 t4 by auto

lemma mult_le_less_imp_less:
  assumes "a  b" and "c < d" and "0 < a" and "0  c"
  shows "a * c < b * d"
  by (metis assms(1) assms(2) assms(3) assms(4) local.antisym_conv2 local.dual_order.strict_trans1 
      local.mult_strict_left_mono local.mult_strict_mono)

end

subclass (in linordered_semiring_strict) ordered_semiring_strict 
proof
  show "c * a < c * b"
    if "a < b"
      and "0 < c"
    for a :: 'a
      and b 
      and c 
    using that
    by (simp add: local.mult_strict_left_mono) 
  show "a * c < b * c"
    if "a < b"
      and "0 < c"
    for a :: 'a
      and b 
      and c 
    using that
    by (simp add: local.mult_strict_right_mono) 
qed

class ordered_semiring_1_strict = ordered_semiring_strict + semiring_1
  ― ‹missing class analogous to class‹linordered_semiring_1_strict› without requiring 
  a total order›
begin

subclass ordered_semiring_1 ..

lemma convex_bound_lt:
  assumes "x < a" and "y < a" and "0  u" and "0  v" and "u + v = 1"
  shows "u * x + v * y < a"
proof -
  from assms have "u * x + v * y < u * a + v * a"
    by (cases "u = 0") (auto intro!: add_less_le_mono mult_strict_left_mono mult_left_mono)
  with assms show ?thesis
    unfolding distrib_right[symmetric] by simp
qed

end

subclass (in linordered_semiring_1_strict) ordered_semiring_1_strict .. 

class ordered_comm_semiring_strict = comm_semiring_0 + ordered_cancel_ab_semigroup_add +
  ― ‹missing class analogous to class‹linordered_comm_semiring_strict› without requiring a total order›
  assumes comm_mult_strict_left_mono: "a < b  0 < c  c * a < c * b"
begin

subclass ordered_semiring_strict
proof
  fix a b c :: 'a
  assume "a < b" and "0 < c"
  thus "c * a < c * b"
    by (rule comm_mult_strict_left_mono)
  thus "a * c < b * c"
    by (simp only: mult.commute)
qed

subclass ordered_cancel_comm_semiring
proof
  fix a b c :: 'a
  assume "a  b" and "0  c"
  thus "c * a  c * b"
    unfolding le_less
    using mult_strict_left_mono by (cases "c = 0") auto
qed

end

subclass (in linordered_comm_semiring_strict) ordered_comm_semiring_strict 
  apply standard
  by (simp add: local.mult_strict_left_mono)

class ordered_ring_strict = ring + ordered_semiring_strict
  + ordered_ab_group_add + partial_abs_if
  ― ‹missing class analogous to class‹linordered_ring_strict› without requiring a total order›
begin

subclass ordered_ring ..

lemma mult_strict_left_mono_neg: "b < a  c < 0  c * a < c * b"
  using mult_strict_left_mono [of b a "- c"] by simp

lemma mult_strict_right_mono_neg: "b < a  c < 0  a * c < b * c"
  using mult_strict_right_mono [of b a "- c"] by simp

lemma mult_neg_neg: "a < 0  b < 0  0 < a * b"
  using mult_strict_right_mono_neg [of a 0 b] by simp

end

lemmas mult_sign_intros =
  mult_nonneg_nonneg mult_nonneg_nonpos
  mult_nonpos_nonneg mult_nonpos_nonpos
  mult_pos_pos mult_pos_neg
  mult_neg_pos mult_neg_neg


subsection ‹Ordered fields›

class ordered_field = field + order + ordered_comm_semiring_strict + ordered_ab_group_add 
  + partial_abs_if 
  ― ‹missing class analogous to class‹linordered_field› without requiring a total order›
begin

lemma frac_less_eq:
  "y  0  z  0  x / y < w / z  (x * z - w * y) / (y * z) < 0"
  by (subst less_iff_diff_less_0) (simp add: diff_frac_eq )

lemma frac_le_eq:
  "y  0  z  0  x / y  w / z  (x * z - w * y) / (y * z)  0"
  by (subst le_iff_diff_le_0) (simp add: diff_frac_eq )

lemmas sign_simps = algebra_simps zero_less_mult_iff mult_less_0_iff

lemmas (in -) sign_simps = algebra_simps zero_less_mult_iff mult_less_0_iff

text‹Simplify expressions equated with 1›

lemma zero_eq_1_divide_iff [simp]: "0 = 1 / a  a = 0"
  by (cases "a = 0") (auto simp: field_simps)

lemma one_divide_eq_0_iff [simp]: "1 / a = 0  a = 0"
  using zero_eq_1_divide_iff[of a] by simp

text‹Simplify expressions such as 0 < 1/x› to 0 < x›

text‹Simplify quotients that are compared with the value 1.›

text ‹Conditional Simplification Rules: No Case Splits›

lemma eq_divide_eq_1 [simp]:
  "(1 = b/a) = ((a  0 & a = b))"
  by (auto simp add: eq_divide_eq)

lemma divide_eq_eq_1 [simp]:
  "(b/a = 1) = ((a  0 & a = b))"
  by (auto simp add: divide_eq_eq)

end (* class ordered_field *)


text ‹The following type class intends to capture some important properties 
  that are common both to the real and the complex numbers. The purpose is
  to be able to state and prove lemmas that apply both to the real and the complex 
  numbers without needing to state the lemma twice.
›

class nice_ordered_field = ordered_field + zero_less_one + idom_abs_sgn +
  assumes positive_imp_inverse_positive: "0 < a  0 < inverse a"
    and inverse_le_imp_le: "inverse a  inverse b  0 < a  b  a"
    and dense_le: "(x. x < y  x  z)  y  z"
    and nn_comparable: "0  a  0  b  a  b  b  a"
    and abs_nn: "¦x¦  0"
begin

subclass (in linordered_field) nice_ordered_field
proof
  show "¦a¦ = - a"
    if "a  0"
    for a :: 'a
    using that
    by simp 
  show "¦a¦ = a"
    if "0  a"
    for a :: 'a
    using that
    by simp 
  show "0 < inverse a"
    if "0 < a"
    for a :: 'a
    using that
    by simp 
  show "b  a"
    if "inverse a  inverse b"
      and "0 < a"
    for a :: 'a
      and b
    using that
    using local.inverse_le_imp_le by blast 
  show "y  z"
    if "x::'a. x < y  x  z"
    for y
      and z
    using that
    using local.dense_le by blast 
  show "a  b  b  a"
    if "0  a"
      and "0  b"
    for a :: 'a
      and b
    using that
    by auto 
  show "0  ¦x¦"
    for x :: 'a
    by simp    
qed

lemma comparable:
  assumes h1: "a  c  a  c"
    and h2: "b  c  b  c"
  shows "a  b  b  a"
proof-
  have "a  b"
    if t1: "¬ b  a" and t2: "a  c" and t3: "b  c"
  proof-
    have "0  c-a"
      by (simp add: t2)      
    moreover have "0  c-b"
      by (simp add: t3)      
    ultimately have "c-a  c-b  c-a  c-b" by (rule nn_comparable)
    hence "-a  -b  -a  -b"
      using local.add_le_imp_le_right local.uminus_add_conv_diff by presburger
    thus ?thesis
      by (simp add: t1)
  qed
  moreover have "a  b"
    if t1: "¬ b  a" and t2: "c  a" and t3: "b  c"
  proof-
    have "b  a"       
      using local.dual_order.trans t2 t3 by blast 
    thus ?thesis
      using t1 by auto
  qed
  moreover have "a  b"
    if t1: "¬ b  a" and t2: "c  a" and t3: "c  b"
  proof-
    have "0  a-c"
      by (simp add: t2)        
    moreover have "0  b-c"
      by (simp add: t3)      
    ultimately have "a-c  b-c  a-c  b-c" by (rule nn_comparable)
    hence "a  b  a  b"
      by (simp add: local.le_diff_eq)
    thus ?thesis
      by (simp add: t1)
  qed
  ultimately show ?thesis using assms by auto
qed

lemma negative_imp_inverse_negative:
  "a < 0  inverse a < 0"
  by (insert positive_imp_inverse_positive [of "-a"],
      simp add: nonzero_inverse_minus_eq less_imp_not_eq)

lemma inverse_positive_imp_positive:
  assumes inv_gt_0: "0 < inverse a" and nz: "a  0"
  shows "0 < a"
proof -
  have "0 < inverse (inverse a)"
    using inv_gt_0 by (rule positive_imp_inverse_positive)
  thus "0 < a"
    using nz by (simp add: nonzero_inverse_inverse_eq)
qed

lemma inverse_negative_imp_negative:
  assumes inv_less_0: "inverse a < 0" and nz: "a  0"
  shows "a < 0"
proof-
  have "inverse (inverse a) < 0"
    using inv_less_0 by (rule negative_imp_inverse_negative)
  thus "a < 0" using nz by (simp add: nonzero_inverse_inverse_eq)
qed

lemma linordered_field_no_lb:
  "x. y. y < x"
proof
  fix x::'a
  have m1: "- (1::'a) < 0" by simp
  from add_strict_right_mono[OF m1, where c=x]
  have "(- 1) + x < x" by simp
  thus "y. y < x" by blast
qed

lemma linordered_field_no_ub:
  "x. y. y > x"
proof
  fix x::'a
  have m1: " (1::'a) > 0" by simp
  from add_strict_right_mono[OF m1, where c=x]
  have "1 + x > x" by simp
  thus "y. y > x" by blast
qed

lemma less_imp_inverse_less:
  assumes less: "a < b" and apos:  "0 < a"
  shows "inverse b < inverse a"
  using assms by (metis local.dual_order.strict_iff_order 
      local.inverse_inverse_eq local.inverse_le_imp_le local.positive_imp_inverse_positive)

lemma inverse_less_imp_less:
  "inverse a < inverse b  0 < a  b < a"
  using local.inverse_le_imp_le local.order.strict_iff_order by blast

text‹Both premises are essential. Consider -1 and 1.›
lemma inverse_less_iff_less [simp]:
  "0 < a  0 < b  inverse a < inverse b  b < a"
  by (blast intro: less_imp_inverse_less dest: inverse_less_imp_less)

lemma le_imp_inverse_le:
  "a  b  0 < a  inverse b  inverse a"
  by (force simp add: le_less less_imp_inverse_less)

lemma inverse_le_iff_le [simp]:
  "0 < a  0 < b  inverse a  inverse b  b  a"
  by (blast intro: le_imp_inverse_le dest: inverse_le_imp_le)


text‹These results refer to both operands being negative.  The opposite-sign
case is trivial, since inverse preserves signs.›
lemma inverse_le_imp_le_neg:
  "inverse a  inverse b  b < 0  b  a"
  by (metis local.inverse_le_imp_le local.inverse_minus_eq local.neg_0_less_iff_less 
      local.neg_le_iff_le)

lemma inverse_less_imp_less_neg:
  "inverse a < inverse b  b < 0  b < a"
  using local.dual_order.strict_iff_order local.inverse_le_imp_le_neg by blast

lemma inverse_less_iff_less_neg [simp]:
  "a < 0  b < 0  inverse a < inverse b  b < a"
  by (metis local.antisym_conv2 local.inverse_less_imp_less_neg local.negative_imp_inverse_negative 
      local.nonzero_inverse_inverse_eq local.order.strict_implies_order)

lemma le_imp_inverse_le_neg:
  "a  b  b < 0  inverse b  inverse a"
  by (force simp add: le_less less_imp_inverse_less_neg)

lemma inverse_le_iff_le_neg [simp]:
  "a < 0  b < 0  inverse a  inverse b  b  a"
  by (blast intro: le_imp_inverse_le_neg dest: inverse_le_imp_le_neg)

lemma one_less_inverse:
  "0 < a  a < 1  1 < inverse a"
  using less_imp_inverse_less [of a 1, unfolded inverse_1] .

lemma one_le_inverse:
  "0 < a  a  1  1  inverse a"
  using le_imp_inverse_le [of a 1, unfolded inverse_1] .

lemma pos_le_divide_eq [field_simps]:
  assumes "0 < c"
  shows "a  b / c  a * c  b"
  using assms by (metis local.divide_eq_imp local.divide_inverse_commute 
      local.dual_order.order_iff_strict local.dual_order.strict_iff_order 
      local.mult_right_mono local.mult_strict_left_mono local.nonzero_divide_eq_eq 
      local.order.strict_implies_order local.positive_imp_inverse_positive)

lemma pos_less_divide_eq [field_simps]:
  assumes "0 < c"
  shows "a < b / c  a * c < b"
  using assms local.dual_order.strict_iff_order local.nonzero_divide_eq_eq local.pos_le_divide_eq 
  by auto

lemma neg_less_divide_eq [field_simps]:
  assumes "c < 0"
  shows "a < b / c  b < a * c"
  by (metis assms local.minus_divide_divide local.mult_minus_right local.neg_0_less_iff_less 
      local.neg_less_iff_less local.pos_less_divide_eq)

lemma neg_le_divide_eq [field_simps]:
  assumes "c < 0"
  shows "a  b / c  b  a * c"
  by (metis assms local.dual_order.order_iff_strict local.dual_order.strict_iff_order 
      local.neg_less_divide_eq local.nonzero_divide_eq_eq)

lemma pos_divide_le_eq [field_simps]:
  assumes "0 < c"
  shows "b / c  a  b  a * c"
  by (metis assms local.dual_order.strict_iff_order local.nonzero_eq_divide_eq 
      local.pos_le_divide_eq)

lemma pos_divide_less_eq [field_simps]:
  assumes "0 < c"
  shows "b / c < a  b < a * c"
  by (metis assms local.minus_divide_left local.mult_minus_left local.neg_less_iff_less 
      local.pos_less_divide_eq)

lemma neg_divide_le_eq [field_simps]:
  assumes "c < 0"
  shows "b / c  a  a * c  b"
  by (metis assms local.minus_divide_left local.mult_minus_left local.neg_le_divide_eq 
      local.neg_le_iff_le)

lemma neg_divide_less_eq [field_simps]:
  assumes "c < 0"
  shows "b / c < a  a * c < b"
  using assms local.dual_order.strict_iff_order local.neg_divide_le_eq by auto

text‹The following field_simps› rules are necessary, as minus is always moved atop of
division but we want to get rid of division.›

lemma pos_le_minus_divide_eq [field_simps]: "0 < c  a  - (b / c)  a * c  - b"
  unfolding minus_divide_left by (rule pos_le_divide_eq)

lemma neg_le_minus_divide_eq [field_simps]: "c < 0  a  - (b / c)  - b  a * c"
  unfolding minus_divide_left by (rule neg_le_divide_eq)

lemma pos_less_minus_divide_eq [field_simps]: "0 < c  a < - (b / c)  a * c < - b"
  unfolding minus_divide_left by (rule pos_less_divide_eq)

lemma neg_less_minus_divide_eq [field_simps]: "c < 0  a < - (b / c)  - b < a * c"
  unfolding minus_divide_left by (rule neg_less_divide_eq)

lemma pos_minus_divide_less_eq [field_simps]: "0 < c  - (b / c) < a  - b < a * c"
  unfolding minus_divide_left by (rule pos_divide_less_eq)

lemma neg_minus_divide_less_eq [field_simps]: "c < 0  - (b / c) < a  a * c < - b"
  unfolding minus_divide_left by (rule neg_divide_less_eq)

lemma pos_minus_divide_le_eq [field_simps]: "0 < c  - (b / c)  a  - b  a * c"
  unfolding minus_divide_left by (rule pos_divide_le_eq)

lemma neg_minus_divide_le_eq [field_simps]: "c < 0  - (b / c)  a  a * c  - b"
  unfolding minus_divide_left by (rule neg_divide_le_eq)

lemma frac_less_eq:
  "y  0  z  0  x / y < w / z  (x * z - w * y) / (y * z) < 0"
  by (subst less_iff_diff_less_0) (simp add: diff_frac_eq )

lemma frac_le_eq:
  "y  0  z  0  x / y  w / z  (x * z - w * y) / (y * z)  0"
  by (subst le_iff_diff_le_0) (simp add: diff_frac_eq )


text‹Lemmas sign_simps› is a first attempt to automate proofs
of positivity/negativity needed for field_simps›. Have not added sign_simps› to field_simps› 
  because the former can lead to case explosions.›

lemma divide_pos_pos[simp]:
  "0 < x  0 < y  0 < x / y"
  by(simp add:field_simps)

lemma divide_nonneg_pos:
  "0  x  0 < y  0  x / y"
  by(simp add:field_simps)

lemma divide_neg_pos:
  "x < 0  0 < y  x / y < 0"
  by(simp add:field_simps)

lemma divide_nonpos_pos:
  "x  0  0 < y  x / y  0"
  by(simp add:field_simps)

lemma divide_pos_neg:
  "0 < x  y < 0  x / y < 0"
  by(simp add:field_simps)

lemma divide_nonneg_neg:
  "0  x  y < 0  x / y  0"
  by(simp add:field_simps)

lemma divide_neg_neg:
  "x < 0  y < 0  0 < x / y"
  by(simp add:field_simps)

lemma divide_nonpos_neg:
  "x  0  y < 0  0  x / y"
  by(simp add:field_simps)

lemma divide_strict_right_mono:
  "a < b  0 < c  a / c < b / c"
  by (simp add: less_imp_not_eq2 divide_inverse mult_strict_right_mono
      positive_imp_inverse_positive)


lemma divide_strict_right_mono_neg:
  "b < a  c < 0  a / c < b / c"
  by (simp add: local.neg_less_divide_eq)

text‹The last premise ensures that terma and termb
      have the same sign›
lemma divide_strict_left_mono:
  "b < a  0 < c  0 < a*b  c / a < c / b"
  by (metis local.divide_neg_pos local.dual_order.strict_iff_order local.frac_less_eq local.less_iff_diff_less_0 local.mult_not_zero local.mult_strict_left_mono)

lemma divide_left_mono:
  "b  a  0  c  0 < a*b  c / a  c / b"
  using local.divide_cancel_left local.divide_strict_left_mono local.dual_order.order_iff_strict by auto

lemma divide_strict_left_mono_neg:
  "a < b  c < 0  0 < a*b  c / a < c / b"
  by (metis local.divide_strict_left_mono local.minus_divide_left local.neg_0_less_iff_less local.neg_less_iff_less mult_commute)

lemma mult_imp_div_pos_le: "0 < y  x  z * y  x / y  z"
  by (subst pos_divide_le_eq, assumption+)

lemma mult_imp_le_div_pos: "0 < y  z * y  x  z  x / y"
  by(simp add:field_simps)

lemma mult_imp_div_pos_less: "0 < y  x < z * y  x / y < z"
  by(simp add:field_simps)

lemma mult_imp_less_div_pos: "0 < y  z * y < x  z < x / y"
  by(simp add:field_simps)

lemma frac_le: "0  x  x  y  0 < w  w  z   x / z  y / w"
  using local.mult_imp_div_pos_le local.mult_imp_le_div_pos local.mult_mono by auto

lemma frac_less: "0  x  x < y  0 < w  w  z  x / z < y / w"
proof-
  assume a1: "w  z"
  assume a2: "0 < w"
  assume a3: "0  x"
  assume a4: "x < y"
  have f5: "a = 0  (b = c / a) = (b * a = c)"
    for a b c::'a
    by (meson local.nonzero_eq_divide_eq)
  have f6: "0 < z"
    using a2 a1 by (meson local.order.ordering_axioms ordering.strict_trans2)
  have "z  0"
    using a2 a1 by (meson local.leD)
  moreover have "x / z  y / w"
    using a1 a2 a3 a4 local.frac_eq_eq local.mult_less_le_imp_less by fastforce
  ultimately have "x / z  y / w"
    using f5 by (metis (no_types))
  thus ?thesis
    using a4 a3 a2 a1 by (meson local.frac_le local.order.not_eq_order_implies_strict 
        local.order.strict_implies_order)
qed


lemma frac_less2: "0 < x  x  y  0 < w  w < z   x / z < y / w"
  by (metis local.antisym_conv2 local.divide_cancel_left local.dual_order.strict_implies_order 
      local.frac_le local.frac_less)

lemma less_half_sum: "a < b  a < (a+b) / (1+1)"
  by (metis local.add_pos_pos local.add_strict_left_mono local.mult_imp_less_div_pos local.semiring_normalization_rules(4) local.zero_less_one mult_commute)

lemma gt_half_sum: "a < b  (a+b)/(1+1) < b"
  by (metis local.add_pos_pos local.add_strict_left_mono local.mult_imp_div_pos_less local.semiring_normalization_rules(24) local.semiring_normalization_rules(4) local.zero_less_one mult_commute)

subclass unbounded_dense_order
proof
  fix x y :: 'a
  have less_add_one: "a < a + 1" for a::'a by auto
  from less_add_one show "y. x < y"
    by blast 

  from less_add_one have "x + (- 1) < (x + 1) + (- 1)"
    by (rule add_strict_right_mono)
  hence "x - 1 < x + 1 - 1" by simp
  hence "x - 1 < x" by (simp add: algebra_simps)
  thus "y. y < x" ..
  show "x < y  z>x. z < y" by (blast intro!: less_half_sum gt_half_sum)
qed


lemma dense_le_bounded:
  fixes x y z :: 'a
  assumes "x < y"
    and *: "w.  x < w ; w < y   w  z"
  shows "y  z"
proof (rule dense_le)
  fix w assume "w < y"
  from dense[OF x < y] obtain u where "x < u" "u < y" by safe
  have "u  w  w  u"
    using u < y w < y comparable local.order.strict_implies_order by blast
  thus "w  z"
    using "*" u < y w < y x < u local.dual_order.trans local.order.strict_trans2 by blast
qed

subclass field_abs_sgn ..


lemma nonzero_abs_inverse:
  "a  0  ¦inverse a¦ = inverse ¦a¦"
  by (rule abs_inverse)

lemma nonzero_abs_divide:
  "b  0  ¦a / b¦ = ¦a¦ / ¦b¦"
  by (rule abs_divide)

lemma field_le_epsilon:
  assumes e: "e. 0 < e  x  y + e"
  shows "x  y"
proof (rule dense_le)
  fix t assume "t < x"
  hence "0 < x - t" by (simp add: less_diff_eq)
  from e [OF this] have "x + 0  x + (y - t)" by (simp add: algebra_simps)
  hence "0  y - t" by (simp only: add_le_cancel_left)
  thus "t  y" by (simp add: algebra_simps)
qed

lemma inverse_positive_iff_positive [simp]:
  "(0 < inverse a) = (0 < a)"
  using local.positive_imp_inverse_positive by fastforce

lemma inverse_negative_iff_negative [simp]:
  "(inverse a < 0) = (a < 0)"
  using local.negative_imp_inverse_negative by fastforce

lemma inverse_nonnegative_iff_nonnegative [simp]:
  "0  inverse a  0  a"
  by (simp add: local.dual_order.order_iff_strict)

lemma inverse_nonpositive_iff_nonpositive [simp]:
  "inverse a  0  a  0"
  using local.inverse_nonnegative_iff_nonnegative local.neg_0_le_iff_le by fastforce

lemma one_less_inverse_iff: "1 < inverse x  0 < x  x < 1"
  using less_trans[of 1 x 0 for x]
  by (metis local.dual_order.strict_trans local.inverse_1 local.inverse_less_imp_less local.inverse_positive_iff_positive local.one_less_inverse local.zero_less_one)

lemma one_le_inverse_iff: "1  inverse x  0 < x  x  1"
  by (metis local.dual_order.strict_trans1 local.inverse_1 local.inverse_le_imp_le local.inverse_positive_iff_positive local.one_le_inverse local.zero_less_one)

lemma inverse_less_1_iff: "inverse x < 1  x  0  1 < x"
proof (rule)
  assume invx1: "inverse x < 1"
  have "inverse x  0  inverse x  0"
    using comparable invx1 local.order.strict_implies_order local.zero_less_one by blast
  then consider (leq0) "inverse x  0" | (pos) "inverse x > 0" | (zero) "inverse x = 0"
    using local.antisym_conv1 by blast
  thus "x  0  1 < x"
    by (metis invx1 local.eq_iff local.inverse_1 local.inverse_less_imp_less 
        local.inverse_nonpositive_iff_nonpositive local.inverse_positive_imp_positive)
next
  assume "x  0  1 < x"
  then consider (neg) "x  0" | (g1) "1 < x" by auto
  thus "inverse x < 1"
    by (metis local.dual_order.not_eq_order_implies_strict local.dual_order.strict_trans
        local.inverse_1 local.inverse_negative_iff_negative local.inverse_zero 
        local.less_imp_inverse_less local.zero_less_one)  
qed

lemma inverse_le_1_iff: "inverse x  1  x  0  1  x"
  by (metis local.dual_order.order_iff_strict local.inverse_1 local.inverse_le_iff_le 
      local.inverse_less_1_iff local.one_le_inverse_iff)

text‹Simplify expressions such as 0 < 1/x› to 0 < x›

lemma zero_le_divide_1_iff [simp]:
  "0  1 / a  0  a"
  using local.dual_order.order_iff_strict local.inverse_eq_divide 
    local.inverse_positive_iff_positive by auto

lemma zero_less_divide_1_iff [simp]:
  "0 < 1 / a  0 < a"
  by (simp add: local.dual_order.strict_iff_order)

lemma divide_le_0_1_iff [simp]:
  "1 / a  0  a  0"
  by (smt local.abs_0 local.abs_1 local.abs_divide local.abs_neg local.abs_nn 
      local.divide_cancel_left local.le_minus_iff local.minus_divide_right local.zero_neq_one)

lemma divide_less_0_1_iff [simp]:
  "1 / a < 0  a < 0"
  using local.dual_order.strict_iff_order by auto

lemma divide_right_mono:
  "a  b  0  c  a/c  b/c"
  using local.divide_cancel_right local.divide_strict_right_mono local.dual_order.order_iff_strict by blast

lemma divide_right_mono_neg: "a  b
     c  0  b / c  a / c"
  by (metis local.divide_cancel_right local.divide_strict_right_mono_neg local.dual_order.strict_implies_order local.eq_refl local.le_imp_less_or_eq)

lemma divide_left_mono_neg: "a  b
     c  0  0 < a * b  c / a  c / b"  
  by (metis local.divide_left_mono local.minus_divide_left local.neg_0_le_iff_le local.neg_le_iff_le mult_commute)

lemma divide_nonneg_nonneg [simp]:
  "0  x  0  y  0  x / y"
  using local.divide_eq_0_iff local.divide_nonneg_pos local.dual_order.order_iff_strict by blast

lemma divide_nonpos_nonpos:
  "x  0  y  0  0  x / y"
  using local.divide_nonpos_neg local.dual_order.order_iff_strict by auto

lemma divide_nonneg_nonpos:
  "0  x  y  0  x / y  0"
  by (metis local.divide_eq_0_iff local.divide_nonneg_neg local.dual_order.order_iff_strict)

lemma divide_nonpos_nonneg:
  "x  0  0  y  x / y  0"
  using local.divide_nonpos_pos local.dual_order.order_iff_strict by auto

text ‹Conditional Simplification Rules: No Case Splits›

lemma le_divide_eq_1_pos [simp]:
  "0 < a  (1  b/a) = (a  b)"
  by (simp add: local.pos_le_divide_eq)

lemma le_divide_eq_1_neg [simp]:
  "a < 0  (1  b/a) = (b  a)"
  by (metis local.le_divide_eq_1_pos local.minus_divide_divide local.neg_0_less_iff_less local.neg_le_iff_le)

lemma divide_le_eq_1_pos [simp]:
  "0 < a  (b/a  1) = (b  a)"
  using local.pos_divide_le_eq by auto

lemma divide_le_eq_1_neg [simp]:
  "a < 0  (b/a  1) = (a  b)"
  by (metis local.divide_le_eq_1_pos local.minus_divide_divide local.neg_0_less_iff_less 
      local.neg_le_iff_le)

lemma less_divide_eq_1_pos [simp]:
  "0 < a  (1 < b/a) = (a < b)"
  by (simp add: local.dual_order.strict_iff_order)

lemma less_divide_eq_1_neg [simp]:
  "a < 0  (1 < b/a) = (b < a)"
  using local.dual_order.strict_iff_order by auto

lemma divide_less_eq_1_pos [simp]:
  "0 < a  (b/a < 1) = (b < a)"
  using local.divide_le_eq_1_pos local.dual_order.strict_iff_order by auto

lemma divide_less_eq_1_neg [simp]:
  "a < 0  b/a < 1  a < b"
  using local.dual_order.strict_iff_order by auto

lemma abs_div_pos: "0 < y 
    ¦x¦ / y = ¦x / y¦"
  by (simp add: local.abs_pos)

lemma zero_le_divide_abs_iff [simp]: "(0  a / ¦b¦) = (0  a | b = 0)"
proof 
  assume assm: "0  a / ¦b¦"
  have absb: "abs b  0" by (fact abs_nn)
  thus "0  a  b = 0"
    using absb assm local.abs_eq_0_iff local.mult_nonneg_nonneg by fastforce
next
  assume "0  a  b = 0"
  then consider (a) "0  a" | (b) "b = 0" by atomize_elim auto
  thus "0  a / ¦b¦"
    by (metis local.abs_eq_0_iff local.abs_nn local.divide_eq_0_iff local.divide_nonneg_nonneg)
qed


lemma divide_le_0_abs_iff [simp]: "(a / ¦b¦  0) = (a  0 | b = 0)"
  by (metis local.minus_divide_left local.neg_0_le_iff_le local.zero_le_divide_abs_iff)

text‹For creating values between termu and termv.›
lemma scaling_mono:
  assumes "u  v" and "0  r" and "r  s"
  shows "u + r * (v - u) / s  v"
proof -
  have "r/s  1" using assms
    by (metis local.divide_le_eq_1_pos local.division_ring_divide_zero 
        local.dual_order.order_iff_strict local.dual_order.trans local.zero_less_one)
  hence "(r/s) * (v - u)  1 * (v - u)"
    using assms(1) local.diff_ge_0_iff_ge local.mult_right_mono by blast
  thus ?thesis
    by (simp add: field_simps)
qed

end (* class nice_ordered_field *)


code_identifier
  code_module Ordered_Fields  (SML) Arith and (OCaml) Arith and (Haskell) Arith

subsection‹Ordered Complex›

declare Conjugate.less_eq_complex_def[simp del]
declare Conjugate.less_complex_def[simp del]

subsection ‹Ordering on complex numbers›

instantiation complex :: nice_ordered_field begin
instance
proof intro_classes
  note defs = less_eq_complex_def less_complex_def abs_complex_def
  fix x y z a b c :: complex
  show "a  0  ¦a¦ = - a" unfolding defs
    by (simp add: cmod_eq_Re complex_is_Real_iff)
  show "0  a  ¦a¦ = a"
    unfolding defs
    by (metis abs_of_nonneg cmod_eq_Re comp_apply complex.exhaust_sel complex_of_real_def zero_complex.simps(1) zero_complex.simps(2))
  show "a < b  0 < c  c * a < c * b" unfolding defs by auto
  show "0 < (1::complex)" unfolding defs by simp
  show "0 < a  0 < inverse a" unfolding defs by auto
  define ra ia rb ib rc ic where "ra = Re a" "ia = Im a" "rb = Re b" "ib = Im b" "rc = Re c" "ic = Im c"
  note ri = this[symmetric]
  hence "a = Complex ra ia" "b = Complex rb ib" "c = Complex rc ic" by auto
  note ri = this ri
  have "rb  ra"
    if "1 / ra  (if rb = 0 then 0 else 1 / rb)" 
      and "ia = 0" and "0 < ra" and "ib = 0"
  proof(cases "rb = 0")
    case True
    thus ?thesis
      using that(3) by auto 
  next
    case False
    thus ?thesis
      by (smt nice_ordered_field_class.frac_less2 that(1) that(3)) 
  qed
  thus "inverse a  inverse b  0 < a  b  a" unfolding defs ri
    by (auto simp: power2_eq_square) 
  show "(a. a < b  a  c)  b  c" unfolding defs ri
    by (metis complex.sel(1) complex.sel(2) dense less_le_not_le 
        nice_ordered_field_class.linordered_field_no_lb not_le_imp_less)    
  show "0  a  0  b  a  b  b  a" unfolding defs by auto
  show "0  ¦x¦" unfolding defs by auto
qed
end

lemma less_eq_complexI: "Re x  Re y  Im x = Im y  xy" unfolding less_eq_complex_def 
  by simp
lemma less_complexI: "Re x < Re y  Im x = Im y  x<y" unfolding less_complex_def 
  by simp

lemma complex_of_real_mono:
  "x  y  complex_of_real x  complex_of_real y"
  unfolding less_eq_complex_def by auto

lemma complex_of_real_mono_iff[simp]:
  "complex_of_real x  complex_of_real y  x  y"
  unfolding less_eq_complex_def by auto

lemma complex_of_real_strict_mono_iff[simp]:
  "complex_of_real x < complex_of_real y  x < y"
  unfolding less_complex_def by auto

lemma complex_of_real_nn_iff[simp]:
  "0  complex_of_real y  0  y"
  unfolding less_eq_complex_def by auto

lemma complex_of_real_pos_iff[simp]:
  "0 < complex_of_real y  0 < y"
  unfolding less_complex_def by auto

lemma Re_mono: "x  y  Re x  Re y"
  unfolding less_eq_complex_def by simp

lemma comp_Im_same: "x  y  Im x = Im y"
  unfolding less_eq_complex_def by simp

lemma Re_strict_mono: "x < y  Re x < Re y"
  unfolding less_complex_def by simp

lemma complex_of_real_cmod: assumes "x  0" shows "complex_of_real (cmod x) = x"
  by (metis Reals_cases abs_of_nonneg assms comp_Im_same complex_is_Real_iff complex_of_real_nn_iff norm_of_real zero_complex.simps(2))


end

Theory Extra_Lattice

section Extra_Lattice› -- Additional results about lattices›

theory Extra_Lattice
  imports Main
begin


subsectionLattice_Missing› -- Miscellaneous missing facts about lattices›

text ‹Two bundles to activate and deactivate lattice specific notation (e.g., ⊓› etc.).
  Activate the notation locally via "@{theory_text includes lattice_notation›}" in a lemma statement.
  (Or sandwich a declaration using that notation between "@{theory_text unbundle lattice_notation ... unbundle no_lattice_notation›}.)›

bundle lattice_notation begin
notation inf (infixl "" 70)
notation sup (infixl "" 65)
notation Inf ("")
notation Sup ("")
notation bot ("")
notation top ("")
end

bundle no_lattice_notation begin
notation inf (infixl "" 70)
notation sup (infixl "" 65)
notation Inf ("")
notation Sup ("")
notation bot ("")
notation top ("")
end

unbundle lattice_notation

text ‹The following class complemented_lattice› describes complemented lattices (with
  const‹uminus› for the complement). The definition follows 
  🌐‹https://en.wikipedia.org/wiki/Complemented_lattice#Definition_and_basic_properties›.
  Additionally, it adopts the convention from class‹boolean_algebra› of defining 
  const‹minus› in terms of the complement.›

class complemented_lattice = bounded_lattice + uminus + minus + 
  assumes inf_compl_bot[simp]: "inf x (-x) = bot"
    and sup_compl_top[simp]: "sup x (-x) = top"
    and diff_eq:  "x - y = inf x (- y)" begin

lemma dual_complemented_lattice:
  "class.complemented_lattice (λx y. x  (- y)) uminus sup greater_eq greater inf  "
proof (rule class.complemented_lattice.intro)
  show "class.bounded_lattice (⊔) (λx y. (y::'a)  x) (λx y. y < x) (⊓)  "
    by (rule dual_bounded_lattice)
  show "class.complemented_lattice_axioms (λx y. (x::'a)  - y) uminus (⊔) (⊓)  "
    by (unfold_locales, auto simp add: diff_eq)
qed


lemma compl_inf_bot [simp]: "inf (- x) x = bot"
  by (simp add: inf_commute)

lemma compl_sup_top [simp]: "sup (- x) x = top"
  by (simp add: sup_commute)

end

class complete_complemented_lattice = complemented_lattice + complete_lattice 

text ‹The following class complemented_lattice› describes orthocomplemented lattices,
  following   🌐‹https://en.wikipedia.org/wiki/Complemented_lattice#Orthocomplementation›.›
class orthocomplemented_lattice = complemented_lattice +
  assumes ortho_involution[simp]: "- (- x) = x"
    and ortho_antimono: "x  y  -x  -y" begin

lemma dual_orthocomplemented_lattice:
  "class.orthocomplemented_lattice (λx y. x  - y) uminus sup greater_eq greater inf  "
proof (rule class.orthocomplemented_lattice.intro)
  show "class.complemented_lattice (λx y. (x::'a)  - y) uminus (⊔) (λx y. y  x) (λx y. y < x) (⊓)  "
    by (rule dual_complemented_lattice)
  show "class.orthocomplemented_lattice_axioms uminus (λx y. (y::'a)  x)"
    by (unfold_locales, auto simp add: diff_eq intro: ortho_antimono)
qed



lemma compl_eq_compl_iff [simp]: "- x = - y  x = y"
  by (metis ortho_involution)

lemma compl_bot_eq [simp]: "- bot = top"
  by (metis inf_compl_bot inf_top_left ortho_involution)

lemma compl_top_eq [simp]: "- top = bot"
  using compl_bot_eq ortho_involution by blast

text ‹De Morgan's law›
  (* Proof from: https://planetmath.org/orthocomplementedlattice *)
lemma compl_sup [simp]: "- (x  y) = - x  - y"
proof -
  have "- (x  y)  - x"
    by (simp add: ortho_antimono)
  moreover have "- (x  y)  - y"
    by (simp add: ortho_antimono)
  ultimately have 1: "- (x  y)  - x  - y"
    by (simp add: sup.coboundedI1)
  have x  - (-x  -y)
    by (metis inf.cobounded1 ortho_antimono ortho_involution)
  moreover have y  - (-x  -y)
    by (metis inf.cobounded2 ortho_antimono ortho_involution)
  ultimately have x  y  - (-x  -y)
    by auto
  hence 2: -x  -y  - (x  y)
    using ortho_antimono by fastforce
  from 1 2 show ?thesis
    by (simp add: eq_iff)
qed

text ‹De Morgan's law›
lemma compl_inf [simp]: "- (x  y) = - x  - y"
  using compl_sup
  by (metis ortho_involution)

lemma compl_mono:
  assumes "x  y"
  shows "- y  - x"
  by (simp add: assms local.ortho_antimono)

lemma compl_le_compl_iff [simp]: "- x  - y  y  x"
  by (auto dest: compl_mono)

lemma compl_le_swap1:
  assumes "y  - x"
  shows "x  -y"
  using assms ortho_antimono by fastforce

lemma compl_le_swap2:
  assumes "- y  x"
  shows "- x  y"
  using assms local.ortho_antimono by fastforce

lemma compl_less_compl_iff[simp]: "- x < - y  y < x"
  by (auto simp add: less_le)

lemma compl_less_swap1:
  assumes "y < - x"
  shows "x < - y"
  using assms compl_less_compl_iff by fastforce

lemma compl_less_swap2:
  assumes "- y < x"
  shows "- x < y"
  using assms compl_le_swap1 compl_le_swap2 less_le_not_le by auto

lemma sup_cancel_left1: "sup (sup x a) (sup (- x) b) = top"
  by (simp add: sup_commute sup_left_commute)

lemma sup_cancel_left2: "sup (sup (- x) a) (sup x b) = top"
  by (simp add: sup.commute sup_left_commute)

lemma inf_cancel_left1: "inf (inf x a) (inf (- x) b) = bot"
  by (simp add: inf.left_commute inf_commute)

lemma inf_cancel_left2: "inf (inf (- x) a) (inf x b) = bot"
  using inf.left_commute inf_commute by auto

lemma sup_compl_top_left1 [simp]: "sup (- x) (sup x y) = top"
  by (simp add: sup_assoc[symmetric])

lemma sup_compl_top_left2 [simp]: "sup x (sup (- x) y) = top"
  using sup_compl_top_left1[of "- x" y] by simp

lemma inf_compl_bot_left1 [simp]: "inf (- x) (inf x y) = bot"
  by (simp add: inf_assoc[symmetric])

lemma inf_compl_bot_left2 [simp]: "inf x (inf (- x) y) = bot"
  using inf_compl_bot_left1[of "- x" y] by simp

lemma inf_compl_bot_right [simp]: "inf x (inf y (- x)) = bot"
  by (subst inf_left_commute) simp

end

class complete_orthocomplemented_lattice = orthocomplemented_lattice + complete_lattice

instance complete_orthocomplemented_lattice  complete_complemented_lattice
  by intro_classes

text ‹The following class orthomodular_lattice› describes orthomodular lattices,
following   🌐‹https://en.wikipedia.org/wiki/Complemented_lattice#Orthomodular_lattices›.›
class orthomodular_lattice = orthocomplemented_lattice +
  assumes orthomodular: "x  y  sup x (inf (-x) y) = y" begin

lemma dual_orthomodular_lattice:
  "class.orthomodular_lattice (λx y. x  - y) uminus sup greater_eq greater inf  "
proof (rule class.orthomodular_lattice.intro)
  show "class.orthocomplemented_lattice (λx y. (x::'a)  - y) uminus (⊔) (λx y. y  x) (λx y. y < x) (⊓)  "
    by (rule dual_orthocomplemented_lattice)
  show "class.orthomodular_lattice_axioms uminus (⊔) (λx y. (y::'a)  x) (⊓)"
  proof (unfold_locales)
    show "(x::'a)  (- x  y) = y"
      if "(y::'a)  x"
      for x :: 'a
        and y :: 'a
      using that local.compl_eq_compl_iff local.ortho_antimono local.orthomodular by fastforce
  qed

qed


end

class complete_orthomodular_lattice = orthomodular_lattice + complete_lattice begin

end

instance complete_orthomodular_lattice  complete_orthocomplemented_lattice
  by intro_classes


instance boolean_algebra  orthomodular_lattice
proof
  fix x y :: 'a  
  show "sup (x::'a) (inf (- x) y) = y"
    if "(x::'a)  y"
    using that
    by (simp add: sup.absorb_iff2 sup_inf_distrib1) 
  show "x - y = inf x (- y)"
    by (simp add: boolean_algebra_class.diff_eq)
qed auto

instance complete_boolean_algebra  complete_orthomodular_lattice
  by intro_classes

lemma image_of_maximum:
  fixes f::"'a::order  'b::conditionally_complete_lattice"
  assumes "mono f"
    and "x. x:M  xm"
    and "m:M"
  shows "(SUP xM. f x) = f m"
  by (smt (verit, ccfv_threshold) assms(1) assms(2) assms(3) cSup_eq_maximum imageE imageI monoD)

lemma cSup_eq_cSup:
  fixes A B :: 'a::conditionally_complete_lattice set›
  assumes bdd: ‹bdd_above A
  assumes B: a. aA  bB. b  a
  assumes A: b. bB  aA. a  b
  shows ‹Sup A = Sup B
proof (cases B = {})
  case True
  with A B have A = {}
    by auto
  with True show ?thesis by simp
next
  case False
  have ‹bdd_above B
    by (meson A bdd bdd_above_def order_trans)
  have A  {}
    using A False by blast
  moreover have a  Sup B if a  A for a
  proof -
    obtain b where b  B and b  a
      using B a  A by auto
    then show ?thesis
      apply (rule cSup_upper2)
      using ‹bdd_above B by simp
  qed
  moreover have ‹Sup B  c if a. a  A  a  c for c
    using False apply (rule cSup_least)
    using A that by fastforce
  ultimately show ?thesis
    by (rule cSup_eq_non_empty)
qed

unbundle no_lattice_notation

end

Theory Complex_Vector_Spaces0

(*  Based on HOL/Real_Vector_Spaces.thy by Brian Huffman, Johannes Hölzl
    Adapted to the complex case by Dominique Unruh *)

section Complex_Vector_Spaces0› -- Vector Spaces and Algebras over the Complex Numbers›

theory Complex_Vector_Spaces0
  imports HOL.Real_Vector_Spaces HOL.Topological_Spaces HOL.Vector_Spaces
    Complex_Main Jordan_Normal_Form.Conjugate
begin                                   

(* Jordan_Normal_Form.Conjugate declares these as simps. Seems too aggressive to me. *)
declare less_complex_def[simp del]
declare less_eq_complex_def[simp del]

subsection ‹Complex vector spaces›

class scaleC = scaleR +
  fixes scaleC :: "complex  'a  'a" (infixr "*C" 75)
  assumes scaleR_scaleC: "scaleR r = scaleC (complex_of_real r)"
begin

abbreviation divideC :: "'a  complex  'a"  (infixl "'/C" 70)
  where "x /C c  inverse c *C x"

end

class complex_vector = scaleC + ab_group_add +
  assumes scaleC_add_right: "a *C (x + y) = (a *C x) + (a *C y)"
    and scaleC_add_left: "(a + b) *C x = (a *C x) + (b *C x)"
    and scaleC_scaleC[simp]: "a *C (b *C x) =  (a * b) *C x"
    and scaleC_one[simp]: "1 *C x = x"

(* Not present in Real_Vector_Spaces *)
subclass (in complex_vector) real_vector
  by (standard, simp_all add: scaleR_scaleC scaleC_add_right scaleC_add_left)

class complex_algebra = complex_vector + ring +
  assumes mult_scaleC_left [simp]: "a *C x * y = a *C (x * y)"
    and mult_scaleC_right [simp]: "x * a *C y = a *C (x * y)"

(* Not present in Real_Vector_Spaces *)
subclass (in complex_algebra) real_algebra
  by (standard, simp_all add: scaleR_scaleC)

class complex_algebra_1 = complex_algebra + ring_1

(* Not present in Real_Vector_Spaces *)
subclass (in complex_algebra_1) real_algebra_1 ..

class complex_div_algebra = complex_algebra_1 + division_ring

(* Not present in Real_Vector_Spaces *)
subclass (in complex_div_algebra) real_div_algebra ..

class complex_field = complex_div_algebra + field

(* Not present in Real_Vector_Spaces *)
subclass (in complex_field) real_field ..

instantiation complex :: complex_field
begin

definition complex_scaleC_def [simp]: "scaleC a x = a * x"

instance
proof intro_classes
  fix r :: real and a b x y :: complex
  show "((*R) r::complex  _) = (*C) (complex_of_real r)"
    by (auto simp add: scaleR_conv_of_real)
  show "a *C (x + y) = a *C x + a *C y"
    by (simp add: ring_class.ring_distribs(1))
  show "(a + b) *C x = a *C x + b *C x"
    by (simp add: algebra_simps)
  show "a *C b *C x = (a * b) *C x"
    by simp
  show "1 *C x = x"
    by simp
  show "a *C (x::complex) * y = a *C (x * y)"
    by simp
  show "(x::complex) * a *C y = a *C (x * y)"
    by simp
qed

end

locale clinear = Vector_Spaces.linear "scaleC::__'a::complex_vector" "scaleC::__'b::complex_vector"
begin

lemmas scaleC = scale

end

global_interpretation complex_vector: vector_space "scaleC :: complex  'a  'a :: complex_vector"
  rewrites "Vector_Spaces.linear (*C) (*C) = clinear"
    and "Vector_Spaces.linear (*) (*C) = clinear"
  defines cdependent_raw_def: cdependent = complex_vector.dependent
    and crepresentation_raw_def: crepresentation = complex_vector.representation
    and csubspace_raw_def: csubspace = complex_vector.subspace
    and cspan_raw_def: cspan = complex_vector.span
    and cextend_basis_raw_def: cextend_basis = complex_vector.extend_basis
    and cdim_raw_def: cdim = complex_vector.dim
proof unfold_locales
  show "Vector_Spaces.linear (*C) (*C) = clinear" "Vector_Spaces.linear (*) (*C) = clinear"
    by (force simp: clinear_def complex_scaleC_def[abs_def])+
qed (use scaleC_add_right scaleC_add_left in auto)


(* Not needed since we did the global_interpretation with mandatory complex_vector-prefix:
hide_const (open)― ‹locale constants›
  complex_vector.dependent
  complex_vector.independent
  complex_vector.representation
  complex_vector.subspace
  complex_vector.span
  complex_vector.extend_basis
  complex_vector.dim *)

abbreviation "cindependent x  ¬ cdependent x"

global_interpretation complex_vector: vector_space_pair "scaleC::__'a::complex_vector" "scaleC::__'b::complex_vector"
  rewrites  "Vector_Spaces.linear (*C) (*C) = clinear"
    and "Vector_Spaces.linear (*) (*C) = clinear"
  defines cconstruct_raw_def: cconstruct = complex_vector.construct
proof unfold_locales
  show "Vector_Spaces.linear (*) (*C) = clinear"
    unfolding clinear_def complex_scaleC_def by auto
qed (auto simp: clinear_def)

(* Not needed since we did the global_interpretation with mandatory complex_vector-prefix:
hide_const (open)― ‹locale constants›
  complex_vector.construct *)

lemma clinear_compose: "clinear f  clinear g  clinear (g  f)"
  unfolding clinear_def by (rule Vector_Spaces.linear_compose)

text ‹Recover original theorem names›

lemmas scaleC_left_commute = complex_vector.scale_left_commute
lemmas scaleC_zero_left = complex_vector.scale_zero_left
lemmas scaleC_minus_left = complex_vector.scale_minus_left
lemmas scaleC_diff_left = complex_vector.scale_left_diff_distrib
lemmas scaleC_sum_left = complex_vector.scale_sum_left
lemmas scaleC_zero_right = complex_vector.scale_zero_right
lemmas scaleC_minus_right = complex_vector.scale_minus_right
lemmas scaleC_diff_right = complex_vector.scale_right_diff_distrib
lemmas scaleC_sum_right = complex_vector.scale_sum_right
lemmas scaleC_eq_0_iff = complex_vector.scale_eq_0_iff
lemmas scaleC_left_imp_eq = complex_vector.scale_left_imp_eq
lemmas scaleC_right_imp_eq = complex_vector.scale_right_imp_eq
lemmas scaleC_cancel_left = complex_vector.scale_cancel_left
lemmas scaleC_cancel_right = complex_vector.scale_cancel_right

lemma divideC_field_simps[field_simps]: (* In Real_Vector_Spaces, these lemmas are unnamed *)
  "c  0  a = b /C c  c *C a = b"
  "c  0  b /C c = a  b = c *C a"
  "c  0  a + b /C c = (c *C a + b) /C c"
  "c  0  a /C c + b = (a + c *C b) /C c"
  "c  0  a - b /C c = (c *C a - b) /C c"
  "c  0  a /C c - b = (a - c *C b) /C c"
  "c  0  - (a /C c) + b = (- a + c *C b) /C c"
  "c  0  - (a /C c) - b = (- a - c *C b) /C c"
  for a b :: "'a :: complex_vector"
  by (auto simp add: scaleC_add_right scaleC_add_left scaleC_diff_right scaleC_diff_left)


text ‹Legacy names -- omitted›

(* lemmas scaleC_left_distrib = scaleC_add_left
lemmas scaleC_right_distrib = scaleC_add_right
lemmas scaleC_left_diff_distrib = scaleC_diff_left
lemmas scaleC_right_diff_distrib = scaleC_diff_right *)

lemmas clinear_injective_0 = linear_inj_iff_eq_0
  and clinear_injective_on_subspace_0 = linear_inj_on_iff_eq_0
  and clinear_cmul = linear_scale
  and clinear_scaleC = linear_scale_self
  and csubspace_mul = subspace_scale
  and cspan_linear_image = linear_span_image
  and cspan_0 = span_zero
  and cspan_mul = span_scale
  and injective_scaleC = injective_scale

lemma scaleC_minus1_left [simp]: "scaleC (-1) x = - x"
  for x :: "'a::complex_vector"
  using scaleC_minus_left [of 1 x] by simp

lemma scaleC_2:
  fixes x :: "'a::complex_vector"
  shows "scaleC 2 x = x + x"
  unfolding one_add_one [symmetric] scaleC_add_left by simp

lemma scaleC_half_double [simp]:
  fixes a :: "'a::complex_vector"
  shows "(1 / 2) *C (a + a) = a"
proof -
  have "r. r *C (a + a) = (r * 2) *C a"
    by (metis scaleC_2 scaleC_scaleC)
  thus ?thesis
    by simp
qed

lemma clinear_scale_complex:
  fixes c::complex shows "clinear f  f (c * b) = c * f b"
  using complex_vector.linear_scale by fastforce


interpretation scaleC_left: additive "(λa. scaleC a x :: 'a::complex_vector)"
  by standard (rule scaleC_add_left)

interpretation scaleC_right: additive "(λx. scaleC a x :: 'a::complex_vector)"
  by standard (rule scaleC_add_right)

lemma nonzero_inverse_scaleC_distrib:
  "a  0  x  0  inverse (scaleC a x) = scaleC (inverse a) (inverse x)"
  for x :: "'a::complex_div_algebra"
  by (rule inverse_unique) simp

lemma inverse_scaleC_distrib: "inverse (scaleC a x) = scaleC (inverse a) (inverse x)"
  for x :: "'a::{complex_div_algebra,division_ring}"
  by (metis inverse_zero nonzero_inverse_scaleC_distrib complex_vector.scale_eq_0_iff)

(* lemmas sum_constant_scaleC = real_vector.sum_constant_scale― ‹legacy name› *)

(* Defined in Real_Vector_Spaces:
named_theorems vector_add_divide_simps "to simplify sums of scaled vectors" *)

lemma complex_add_divide_simps[vector_add_divide_simps]:  (* In Real_Vector_Spaces, these lemmas are unnamed *)
  "v + (b / z) *C w = (if z = 0 then v else (z *C v + b *C w) /C z)"
  "a *C v + (b / z) *C w = (if z = 0 then a *C v else ((a * z) *C v + b *C w) /C z)"
  "(a / z) *C v + w = (if z = 0 then w else (a *C v + z *C w) /C z)"
  "(a / z) *C v + b *C w = (if z = 0 then b *C w else (a *C v + (b * z) *C w) /C z)"
  "v - (b / z) *C w = (if z = 0 then v else (z *C v - b *C w) /C z)"
  "a *C v - (b / z) *C w = (if z = 0 then a *C v else ((a * z) *C v - b *C w) /C z)"
  "(a / z) *C v - w = (if z = 0 then -w else (a *C v - z *C w) /C z)"
  "(a / z) *C v - b *C w = (if z = 0 then -b *C w else (a *C v - (b * z) *C w) /C z)"
  for v :: "'a :: complex_vector"
  by (simp_all add: divide_inverse_commute scaleC_add_right scaleC_diff_right)

lemma ceq_vector_fraction_iff [vector_add_divide_simps]:
  fixes x :: "'a :: complex_vector"
  shows "(x = (u / v) *C a)  (if v=0 then x = 0 else v *C x = u *C a)"
  by auto (metis (no_types) divide_eq_1_iff divide_inverse_commute scaleC_one scaleC_scaleC)

lemma cvector_fraction_eq_iff [vector_add_divide_simps]:
  fixes x :: "'a :: complex_vector"
  shows "((u / v) *C a = x)  (if v=0 then x = 0 else u *C a = v *C x)"
  by (metis ceq_vector_fraction_iff)

lemma complex_vector_affinity_eq:
  fixes x :: "'a :: complex_vector"
  assumes m0: "m  0"
  shows "m *C x + c = y  x = inverse m *C y - (inverse m *C c)"
    (is "?lhs  ?rhs")
proof
  assume ?lhs
  hence "m *C x = y - c" by (simp add: field_simps)
  hence "inverse m *C (m *C x) = inverse m *C (y - c)" by simp
  thus "x = inverse m *C y - (inverse m *C c)"
    using m0
    by (simp add: complex_vector.scale_right_diff_distrib)
next
  assume ?rhs
  with m0 show "m *C x + c = y"
    by (simp add: complex_vector.scale_right_diff_distrib)
qed

lemma complex_vector_eq_affinity: "m  0  y = m *C x + c  inverse m *C y - (inverse m *C c) = x"
  for x :: "'a::complex_vector"
  using complex_vector_affinity_eq[where m=m and x=x and y=y and c=c]
  by metis

lemma scaleC_eq_iff [simp]: "b + u *C a = a + u *C b  a = b  u = 1"
  for a :: "'a::complex_vector"
proof (cases "u = 1")
  case True
  thus ?thesis by auto
next
  case False
  have "a = b" if "b + u *C a = a + u *C b"
  proof -
    from that have "(u - 1) *C a = (u - 1) *C b"
      by (simp add: algebra_simps)
    with False show ?thesis
      by auto
  qed
  thus ?thesis by auto
qed

lemma scaleC_collapse [simp]: "(1 - u) *C a + u *C a = a"
  for a :: "'a::complex_vector"
  by (simp add: algebra_simps)

subsection ‹Embedding of the Complex Numbers into any complex_algebra_1›: of_complex›


definition of_complex :: "complex  'a::complex_algebra_1"
  where "of_complex c = scaleC c 1"


lemma scaleC_conv_of_complex: "scaleC r x = of_complex r * x"
  by (simp add: of_complex_def)

lemma of_complex_0 [simp]: "of_complex 0 = 0"
  by (simp add: of_complex_def)

lemma of_complex_1 [simp]: "of_complex 1 = 1"
  by (simp add: of_complex_def)

lemma of_complex_add [simp]: "of_complex (x + y) = of_complex x + of_complex y"
  by (simp add: of_complex_def scaleC_add_left)

lemma of_complex_minus [simp]: "of_complex (- x) = - of_complex x"
  by (simp add: of_complex_def)

lemma of_complex_diff [simp]: "of_complex (x - y) = of_complex x - of_complex y"
  by (simp add: of_complex_def scaleC_diff_left)

lemma of_complex_mult [simp]: "of_complex (x * y) = of_complex x * of_complex y"
  by (simp add: of_complex_def mult.commute)

lemma of_complex_sum[simp]: "of_complex (sum f s) = (xs. of_complex (f x))"
  by (induct s rule: infinite_finite_induct) auto

lemma of_complex_prod[simp]: "of_complex (prod f s) = (xs. of_complex (f x))"
  by (induct s rule: infinite_finite_induct) auto

lemma nonzero_of_complex_inverse:
  "x  0  of_complex (inverse x) = inverse (of_complex x :: 'a::complex_div_algebra)"
  by (simp add: of_complex_def nonzero_inverse_scaleC_distrib)

lemma of_complex_inverse [simp]:
  "of_complex (inverse x) = inverse (of_complex x :: 'a::{complex_div_algebra,division_ring})"
  by (simp add: of_complex_def inverse_scaleC_distrib)

lemma nonzero_of_complex_divide:
  "y  0  of_complex (x / y) = (of_complex x / of_complex y :: 'a::complex_field)"
  by (simp add: divide_inverse nonzero_of_complex_inverse)

lemma of_complex_divide [simp]:
  "of_complex (x / y) = (of_complex x / of_complex y :: 'a::complex_div_algebra)"
  by (simp add: divide_inverse)

lemma of_complex_power [simp]:
  "of_complex (x ^ n) = (of_complex x :: 'a::{complex_algebra_1}) ^ n"
  by (induct n) simp_all

lemma of_complex_power_int [simp]:
  "of_complex (power_int x n) = power_int (of_complex x :: 'a :: {complex_div_algebra,division_ring}) n"
  by (auto simp: power_int_def)

lemma of_complex_eq_iff [simp]: "of_complex x = of_complex y  x = y"
  by (simp add: of_complex_def)

lemma inj_of_complex: "inj of_complex"
  by (auto intro: injI)

lemmas of_complex_eq_0_iff [simp] = of_complex_eq_iff [of _ 0, simplified]
lemmas of_complex_eq_1_iff [simp] = of_complex_eq_iff [of _ 1, simplified]

lemma minus_of_complex_eq_of_complex_iff [simp]: "-of_complex x = of_complex y  -x = y"
  using of_complex_eq_iff[of "-x" y] by (simp only: of_complex_minus)

lemma of_complex_eq_minus_of_complex_iff [simp]: "of_complex x = -of_complex y  x = -y"
  using of_complex_eq_iff[of x "-y"] by (simp only: of_complex_minus)

lemma of_complex_eq_id [simp]: "of_complex = (id :: complex  complex)"
  by (rule ext) (simp add: of_complex_def)

text ‹Collapse nested embeddings.›
lemma of_complex_of_nat_eq [simp]: "of_complex (of_nat n) = of_nat n"
  by (induct n) auto

lemma of_complex_of_int_eq [simp]: "of_complex (of_int z) = of_int z"
  by (cases z rule: int_diff_cases) simp

lemma of_complex_numeral [simp]: "of_complex (numeral w) = numeral w"
  using of_complex_of_int_eq [of "numeral w"] by simp

lemma of_complex_neg_numeral [simp]: "of_complex (- numeral w) = - numeral w"
  using of_complex_of_int_eq [of "- numeral w"] by simp

lemma numeral_power_int_eq_of_complex_cancel_iff [simp]:
  "power_int (numeral x) n = (of_complex y :: 'a :: {complex_div_algebra, division_ring}) 
     power_int (numeral x) n = y"
proof -
  have "power_int (numeral x) n = (of_complex (power_int (numeral x) n) :: 'a)"
    by simp
  also have " = of_complex y  power_int (numeral x) n = y"
    by (subst of_complex_eq_iff) auto
  finally show ?thesis .
qed

lemma of_complex_eq_numeral_power_int_cancel_iff [simp]:
  "(of_complex y :: 'a :: {complex_div_algebra, division_ring}) = power_int (numeral x) n 
     y = power_int (numeral x) n"
  by (subst (1 2) eq_commute) simp

lemma of_complex_eq_of_complex_power_int_cancel_iff [simp]:
  "power_int (of_complex b :: 'a :: {complex_div_algebra, division_ring}) w = of_complex x 
     power_int b w = x"
  by (metis of_complex_power_int of_complex_eq_iff)

lemma of_complex_in_Ints_iff [simp]: "of_complex x    x  "
proof safe
  fix x assume "(of_complex x :: 'a)  "
  then obtain n where "(of_complex x :: 'a) = of_int n"
    by (auto simp: Ints_def)
  also have "of_int n = of_complex (of_int n)"
    by simp
  finally have "x = of_int n"
    by (subst (asm) of_complex_eq_iff)
  thus "x  "
    by auto
qed (auto simp: Ints_def)

lemma Ints_of_complex [intro]: "x    of_complex x  "
  by simp


text ‹Every complex algebra has characteristic zero.›

(* Inherited from real_algebra_1 *)
(* instance complex_algebra_1 < ring_char_0 .. *)

lemma fraction_scaleC_times [simp]:
  fixes a :: "'a::complex_algebra_1"
  shows "(numeral u / numeral v) *C (numeral w * a) = (numeral u * numeral w / numeral v) *C a"
  by (metis (no_types, lifting) of_complex_numeral scaleC_conv_of_complex scaleC_scaleC times_divide_eq_left)

lemma inverse_scaleC_times [simp]:
  fixes a :: "'a::complex_algebra_1"
  shows "(1 / numeral v) *C (numeral w * a) = (numeral w / numeral v) *C a"
  by (metis divide_inverse_commute inverse_eq_divide of_complex_numeral scaleC_conv_of_complex scaleC_scaleC)

lemma scaleC_times [simp]:
  fixes a :: "'a::complex_algebra_1"
  shows "(numeral u) *C (numeral w * a) = (numeral u * numeral w) *C a"
  by (simp add: scaleC_conv_of_complex)

(* Inherited from real_field *)
(* instance complex_field < field_char_0 .. *)


subsection ‹The Set of Real Numbers›

definition Complexs :: "'a::complex_algebra_1 set"  ("")
  where " = range of_complex"

lemma Complexs_of_complex [simp]: "of_complex r  "
  by (simp add: Complexs_def)

lemma Complexs_of_int [simp]: "of_int z  "
  by (subst of_complex_of_int_eq [symmetric], rule Complexs_of_complex)

lemma Complexs_of_nat [simp]: "of_nat n  "
  by (subst of_complex_of_nat_eq [symmetric], rule Complexs_of_complex)

lemma Complexs_numeral [simp]: "numeral w  "
  by (subst of_complex_numeral [symmetric], rule Complexs_of_complex)

lemma Complexs_0 [simp]: "0  " and Complexs_1 [simp]: "1  "
  by (simp_all add: Complexs_def)

lemma Complexs_add [simp]: "a    b    a + b  "
  apply (auto simp add: Complexs_def)
  by (metis of_complex_add range_eqI) 

lemma Complexs_minus [simp]: "a    - a  "
  by (auto simp: Complexs_def)

lemma Complexs_minus_iff [simp]: "- a    a  "
  using Complexs_minus by fastforce

lemma Complexs_diff [simp]: "a    b    a - b  "
  by (metis Complexs_add Complexs_minus_iff add_uminus_conv_diff)

lemma Complexs_mult [simp]: "a    b    a * b  "
  apply (auto simp add: Complexs_def)
  by (metis of_complex_mult rangeI)

lemma nonzero_Complexs_inverse: "a    a  0  inverse a  "
  for a :: "'a::complex_div_algebra"
  apply (auto simp add: Complexs_def)
  by (metis of_complex_inverse range_eqI) 

lemma Complexs_inverse: "a    inverse a  "
  for a :: "'a::{complex_div_algebra,division_ring}"
  using nonzero_Complexs_inverse by fastforce

lemma Complexs_inverse_iff [simp]: "inverse x    x  "
  for x :: "'a::{complex_div_algebra,division_ring}"
  by (metis Complexs_inverse inverse_inverse_eq)

lemma nonzero_Complexs_divide: "a    b    b  0  a / b  "
  for a b :: "'a::complex_field"
  by (simp add: divide_inverse)

lemma Complexs_divide [simp]: "a    b    a / b  "
  for a b :: "'a::{complex_field,field}"
  using nonzero_Complexs_divide by fastforce

lemma Complexs_power [simp]: "a    a ^ n  "
  for a :: "'a::complex_algebra_1"
  apply (auto simp add: Complexs_def)
  by (metis range_eqI of_complex_power[symmetric])

lemma Complexs_cases [cases set: Complexs]:
  assumes "q  "
  obtains (of_complex) c where "q = of_complex c"
  unfolding Complexs_def
proof -
  from q   have "q  range of_complex" unfolding Complexs_def .
  then obtain c where "q = of_complex c" ..
  then show thesis ..
qed

lemma sum_in_Complexs [intro,simp]: "(i. i  s  f i  )  sum f s  "
proof (induct s rule: infinite_finite_induct)
  case infinite
  then show ?case by (metis Complexs_0 sum.infinite)
qed simp_all

lemma prod_in_Complexs [intro,simp]: "(i. i  s  f i  )  prod f s  "
proof (induct s rule: infinite_finite_induct)
  case infinite
  then show ?case by (metis Complexs_1 prod.infinite)
qed simp_all

lemma Complexs_induct [case_names of_complex, induct set: Complexs]:
  "q    (r. P (of_complex r))  P q"
  by (rule Complexs_cases) auto



subsection ‹Ordered complex vector spaces›

class ordered_complex_vector = complex_vector + ordered_ab_group_add +
  assumes scaleC_left_mono: "x  y  0  a  a *C x  a *C y"
    and scaleC_right_mono: "a  b  0  x  a *C x  b *C x"
begin

subclass (in ordered_complex_vector) ordered_real_vector
  apply standard
  by (auto simp add: less_eq_complex_def scaleC_left_mono scaleC_right_mono scaleR_scaleC)

lemma scaleC_mono:
  "a  b  x  y  0  b  0  x  a *C x  b *C y"
  by (meson order_trans scaleC_left_mono scaleC_right_mono)

lemma scaleC_mono':
  "a  b  c  d  0  a  0  c  a *C c  b *C d"
  by (rule scaleC_mono) (auto intro: order.trans)

lemma pos_le_divideC_eq [field_simps]:
  "a  b /C c  c *C a  b" (is "?P  ?Q") if "0 < c"
proof
  assume ?P
  with scaleC_left_mono that have "c *C a  c *C (b /C c)"
    using preorder_class.less_imp_le by blast
  with that show ?Q
    by auto
next
  assume ?Q
  with scaleC_left_mono that have "c *C a /C c  b /C c"
    using less_complex_def less_eq_complex_def by fastforce
  with that show ?P
    by auto
qed

lemma pos_less_divideC_eq [field_simps]:
  "a < b /C c  c *C a < b" if "c > 0"
  using that pos_le_divideC_eq [of c a b]
  by (auto simp add: le_less)

lemma pos_divideC_le_eq [field_simps]:
  "b /C c  a  b  c *C a" if "c > 0"
  using that pos_le_divideC_eq [of "inverse c" b a]
    less_complex_def by auto

lemma pos_divideC_less_eq [field_simps]:
  "b /C c < a  b < c *C a" if "c > 0"
  using that pos_less_divideC_eq [of "inverse c" b a]
  by (simp add: local.less_le_not_le local.pos_divideC_le_eq local.pos_le_divideC_eq)

lemma pos_le_minus_divideC_eq [field_simps]:
  "a  - (b /C c)  c *C a  - b" if "c > 0"
  using that
  by (metis local.ab_left_minus local.add.inverse_unique local.add.right_inverse local.add_minus_cancel local.le_minus_iff local.pos_divideC_le_eq local.scaleC_add_right local.scaleC_one local.scaleC_scaleC)

lemma pos_less_minus_divideC_eq [field_simps]:
  "a < - (b /C c)  c *C a < - b" if "c > 0"
  using that
  by (metis le_less less_le_not_le pos_divideC_le_eq pos_divideC_less_eq pos_le_minus_divideC_eq)

lemma pos_minus_divideC_le_eq [field_simps]:
  "- (b /C c)  a  - b  c *C a" if "c > 0"
  using that
  by (metis local.add_minus_cancel local.left_minus local.pos_divideC_le_eq local.scaleC_add_right)

lemma pos_minus_divideC_less_eq [field_simps]:
  "- (b /C c) < a  - b < c *C a" if "c > 0"
  using that by (simp add: less_le_not_le pos_le_minus_divideC_eq pos_minus_divideC_le_eq) 

lemma scaleC_image_atLeastAtMost: "c > 0  scaleC c ` {x..y} = {c *C x..c *C y}"
  apply (auto intro!: scaleC_left_mono simp: image_iff Bex_def)
  by (meson local.eq_iff pos_divideC_le_eq pos_le_divideC_eq)

end (* class ordered_complex_vector *)

lemma neg_le_divideC_eq [field_simps]:
  "a  b /C c  b  c *C a" (is "?P  ?Q") if "c < 0"
    for a b :: "'a :: ordered_complex_vector"
  using that pos_le_divideC_eq [of "- c" a "- b"]
  by (simp add: less_complex_def)

lemma neg_less_divideC_eq [field_simps]:
  "a < b /C c  b < c *C a" if "c < 0"
    for a b :: "'a :: ordered_complex_vector"
  using that neg_le_divideC_eq [of c a b]
  by (smt (verit, ccfv_SIG) neg_le_divideC_eq antisym_conv2 complex_vector.scale_minus_right dual_order.strict_implies_order le_less_trans neg_le_iff_le scaleC_scaleC)

lemma neg_divideC_le_eq [field_simps]:
  "b /C c  a  c *C a  b" if "c < 0"
    for a b :: "'a :: ordered_complex_vector"
  using that pos_divideC_le_eq [of "- c" "- b" a]
  by (simp add: less_complex_def)

lemma neg_divideC_less_eq [field_simps]:
  "b /C c < a  c *C a < b" if "c < 0"
    for a b :: "'a :: ordered_complex_vector"
  using that neg_divideC_le_eq [of c b a]
  by (meson neg_le_divideC_eq less_le_not_le)

lemma neg_le_minus_divideC_eq [field_simps]:
  "a  - (b /C c)  - b  c *C a" if "c < 0"
    for a b :: "'a :: ordered_complex_vector"
  using that pos_le_minus_divideC_eq [of "- c" a "- b"]
  by (metis neg_le_divideC_eq complex_vector.scale_minus_right)

lemma neg_less_minus_divideC_eq [field_simps]:
  "a < - (b /C c)  - b < c *C a" if "c < 0"
    for a b :: "'a :: ordered_complex_vector"
proof -
  have *: "- b = c *C a  b = - (c *C a)"
    by (metis add.inverse_inverse)
  from that neg_le_minus_divideC_eq [of c a b]
  show ?thesis by (auto simp add: le_less *)
qed

lemma neg_minus_divideC_le_eq [field_simps]:
  "- (b /C c)  a  c *C a  - b" if "c < 0"
for a b :: "'a :: ordered_complex_vector"
  using that pos_minus_divideC_le_eq [of "- c" "- b" a]
  by (metis Complex_Vector_Spaces0.neg_divideC_le_eq complex_vector.scale_minus_right)

lemma neg_minus_divideC_less_eq [field_simps]:
  "- (b /C c) < a  c *C a < - b" if "c < 0"
for a b :: "'a :: ordered_complex_vector"
  using that by (simp add: less_le_not_le neg_le_minus_divideC_eq neg_minus_divideC_le_eq)

lemma divideC_field_splits_simps_1 [field_split_simps]: (* In Real_Vector_Spaces, these lemmas are unnamed *)
  "a = b /C c  (if c = 0 then a = 0 else c *C a = b)"
  "b /C c = a  (if c = 0 then a = 0 else b = c *C a)"
  "a + b /C c = (if c = 0 then a else (c *C a + b) /C c)"
  "a /C c + b = (if c = 0 then b else (a + c *C b) /C c)"
  "a - b /C c = (if c = 0 then a else (c *C a - b) /C c)"
  "a /C c - b = (if c = 0 then - b else (a - c *C b) /C c)"
  "- (a /C c) + b = (if c = 0 then b else (- a + c *C b) /C c)"
  "- (a /C c) - b = (if c = 0 then - b else (- a - c *C b) /C c)"
  for a b :: "'a :: complex_vector"
  by (auto simp add: field_simps)

lemma divideC_field_splits_simps_2 [field_split_simps]: (* In Real_Vector_Spaces, these lemmas are unnamed *)
  "0 < c  a  b /C c  (if c > 0 then c *C a  b else if c < 0 then b  c *C a else a  0)"
  "0 < c  a < b /C c  (if c > 0 then c *C a < b else if c < 0 then b < c *C a else a < 0)"
  "0 < c  b /C c  a  (if c > 0 then b  c *C a else if c < 0 then c *C a  b else a  0)"
  "0 < c  b /C c < a  (if c > 0 then b < c *C a else if c < 0 then c *C a < b else a > 0)"
  "0 < c  a  - (b /C c)  (if c > 0 then c *C a  - b else if c < 0 then - b  c *C a else a  0)"
  "0 < c  a < - (b /C c)  (if c > 0 then c *C a < - b else if c < 0 then - b < c *C a else a < 0)"
  "0 < c  - (b /C c)  a  (if c > 0 then - b  c *C a else if c < 0 then c *C a  - b else a  0)"
  "0 < c  - (b /C c) < a  (if c > 0 then - b < c *C a else if c < 0 then c *C a < - b else a > 0)"
  for a b :: "'a :: ordered_complex_vector"
  by (clarsimp intro!: field_simps)+

lemma scaleC_nonneg_nonneg: "0  a  0  x  0  a *C x"
  for x :: "'a::ordered_complex_vector"
  using scaleC_left_mono [of 0 x a] by simp

lemma scaleC_nonneg_nonpos: "0  a  x  0  a *C x  0"
  for x :: "'a::ordered_complex_vector"
  using scaleC_left_mono [of x 0 a] by simp

lemma scaleC_nonpos_nonneg: "a  0  0  x  a *C x  0"
  for x :: "'a::ordered_complex_vector"
  using scaleC_right_mono [of a 0 x] by simp

lemma split_scaleC_neg_le: "(0  a  x  0)  (a  0  0  x)  a *C x  0"
  for x :: "'a::ordered_complex_vector"
  by (auto simp: scaleC_nonneg_nonpos scaleC_nonpos_nonneg)

lemma cle_add_iff1: "a *C e + c  b *C e + d  (a - b) *C e + c  d"
  for c d e :: "'a::ordered_complex_vector"
  by (simp add: algebra_simps)

lemma cle_add_iff2: "a *C e + c  b *C e + d  c  (b - a) *C e + d"
  for c d e :: "'a::ordered_complex_vector"
  by (simp add: algebra_simps)

lemma scaleC_left_mono_neg: "b  a  c  0  c *C a  c *C b"
  for a b :: "'a::ordered_complex_vector"
  by (drule scaleC_left_mono [of _ _ "- c"], simp_all add: less_eq_complex_def)

lemma scaleC_right_mono_neg: "b  a  c  0  a *C c  b *C c"
  for c :: "'a::ordered_complex_vector"
  by (drule scaleC_right_mono [of _ _ "- c"], simp_all)

lemma scaleC_nonpos_nonpos: "a  0  b  0  0  a *C b"
  for b :: "'a::ordered_complex_vector"
  using scaleC_right_mono_neg [of a 0 b] by simp

lemma split_scaleC_pos_le: "(0  a  0  b)  (a  0  b  0)  0  a *C b"
  for b :: "'a::ordered_complex_vector"
  by (auto simp: scaleC_nonneg_nonneg scaleC_nonpos_nonpos)

lemma zero_le_scaleC_iff:
  fixes b :: "'a::ordered_complex_vector"
  assumes "a  " (* Not present in Real_Vector_Spaces.thy *)
  shows "0  a *C b  0 < a  0  b  a < 0  b  0  a = 0"
    (is "?lhs = ?rhs")
proof (cases "a = 0")
  case True
  then show ?thesis by simp
next
  case False
  show ?thesis
  proof
    assume ?lhs
    from a  0 consider "a > 0" | "a < 0"
      by (metis assms complex_is_Real_iff less_complex_def less_eq_complex_def not_le order.not_eq_order_implies_strict that(1) zero_complex.sel(2))
    then show ?rhs
    proof cases
      case 1
      with ?lhs have "inverse a *C 0  inverse a *C (a *C b)"
        by (metis complex_vector.scale_zero_right ordered_complex_vector_class.pos_le_divideC_eq)
      with 1 show ?thesis
        by simp
    next
      case 2
      with ?lhs have "- inverse a *C 0  - inverse a *C (a *C b)"
        by (metis Complex_Vector_Spaces0.neg_le_minus_divideC_eq complex_vector.scale_zero_right neg_le_0_iff_le scaleC_left.minus)
      with 2 show ?thesis
        by simp
    qed
  next
    assume ?rhs
    then show ?lhs
      using less_imp_le split_scaleC_pos_le by auto
  qed
qed

lemma scaleC_le_0_iff:
  "a *C b  0  0 < a  b  0  a < 0  0  b  a = 0"
  if "a  " (* Not present in Real_Vector_Spaces *)
  for b::"'a::ordered_complex_vector"
  apply (insert zero_le_scaleC_iff [of "-a" b])
  using less_complex_def that by force


lemma scaleC_le_cancel_left: "c *C a  c *C b  (0 < c  a  b)  (c < 0  b  a)"
  if "c  " (* Not present in Real_Vector_Spaces *)
  for b :: "'a::ordered_complex_vector"
  by (smt (verit, ccfv_threshold) Complex_Vector_Spaces0.neg_divideC_le_eq complex_vector.scale_cancel_left complex_vector.scale_zero_right dual_order.eq_iff dual_order.trans ordered_complex_vector_class.pos_le_divideC_eq that zero_le_scaleC_iff)

lemma scaleC_le_cancel_left_pos: "0 < c  c *C a  c *C b  a  b"
  for b :: "'a::ordered_complex_vector"
  by (simp add: complex_is_Real_iff less_complex_def scaleC_le_cancel_left)

lemma scaleC_le_cancel_left_neg: "c < 0  c *C a  c *C b  b  a"
  for b :: "'a::ordered_complex_vector"
  by (simp add: complex_is_Real_iff less_complex_def scaleC_le_cancel_left)

lemma scaleC_left_le_one_le: "0  x  a  1  a *C x  x"
  for x :: "'a::ordered_complex_vector" and a :: complex
  using scaleC_right_mono[of a 1 x] by simp

subsection ‹Complex normed vector spaces›

(* Classes dist, norm, sgn_div_norm, dist_norm, uniformity_dist
   defined in Real_Vector_Spaces are unchanged in the complex setting.
   No need to define them here. *)

class complex_normed_vector = complex_vector + sgn_div_norm + dist_norm + uniformity_dist + open_uniformity +
  real_normed_vector + (* Not present in Real_Normed_Vector *)
  assumes norm_scaleC [simp]: "norm (scaleC a x) = cmod a * norm x"
begin
(* lemma norm_ge_zero [simp]: "0 ≤ norm x" *) (* Not needed, included from real_normed_vector *)
end

class complex_normed_algebra = complex_algebra + complex_normed_vector +
  real_normed_algebra (* Not present in Real_Normed_Vector *)
  (* assumes norm_mult_ineq: "norm (x * y) ≤ norm x * norm y" *) (* Not needed, included from real_normed_algebra *)

class complex_normed_algebra_1 = complex_algebra_1 + complex_normed_algebra +
  real_normed_algebra_1 (* Not present in Real_Normed_Vector *)
  (* assumes norm_one [simp]: "norm 1 = 1" *) (* Not needed, included from real_normed_algebra_1 *)

lemma (in complex_normed_algebra_1) scaleC_power [simp]: "(scaleC x y) ^ n = scaleC (x^n) (y^n)"
  by (induct n) (simp_all add: mult_ac)

class complex_normed_div_algebra = complex_div_algebra + complex_normed_vector +
  real_normed_div_algebra (* Not present in Real_Normed_Vector *)
  (* assumes norm_mult: "norm (x * y) = norm x * norm y" *) (* Not needed, included from real_normed_div_algebra *)

class complex_normed_field = complex_field + complex_normed_div_algebra

subclass (in complex_normed_field) real_normed_field ..

instance complex_normed_div_algebra < complex_normed_algebra_1 ..

context complex_normed_vector begin
(* Inherited from real_normed_vector:
lemma norm_zero [simp]: "norm (0::'a) = 0"
lemma zero_less_norm_iff [simp]: "norm x > 0 ⟷ x ≠ 0"
lemma norm_not_less_zero [simp]: "¬ norm x < 0"
lemma norm_le_zero_iff [simp]: "norm x ≤ 0 ⟷ x = 0"
lemma norm_minus_cancel [simp]: "norm (- x) = norm x"
lemma norm_minus_commute: "norm (a - b) = norm (b - a)"
lemma dist_add_cancel [simp]: "dist (a + b) (a + c) = dist b c"
lemma dist_add_cancel2 [simp]: "dist (b + a) (c + a) = dist b c"
lemma norm_uminus_minus: "norm (- x - y) = norm (x + y)"
lemma norm_triangle_ineq2: "norm a - norm b ≤ norm (a - b)"
lemma norm_triangle_ineq3: "¦norm a - norm b¦ ≤ norm (a - b)"
lemma norm_triangle_ineq4: "norm (a - b) ≤ norm a + norm b"
lemma norm_triangle_le_diff: "norm x + norm y ≤ e ⟹ norm (x - y) ≤ e"
lemma norm_diff_ineq: "norm a - norm b ≤ norm (a + b)"
lemma norm_triangle_sub: "norm x ≤ norm y + norm (x - y)"
lemma norm_triangle_le: "norm x + norm y ≤ e ⟹ norm (x + y) ≤ e"
lemma norm_triangle_lt: "norm x + norm y < e ⟹ norm (x + y) < e"
lemma norm_add_leD: "norm (a + b) ≤ c ⟹ norm b ≤ norm a + c"
lemma norm_diff_triangle_ineq: "norm ((a + b) - (c + d)) ≤ norm (a - c) + norm (b - d)"
lemma norm_diff_triangle_le: "norm (x - z) ≤ e1 + e2"
  if "norm (x - y) ≤ e1"  "norm (y - z) ≤ e2"
lemma norm_diff_triangle_less: "norm (x - z) < e1 + e2"
  if "norm (x - y) < e1"  "norm (y - z) < e2"
lemma norm_triangle_mono:
  "norm a ≤ r ⟹ norm b ≤ s ⟹ norm (a + b) ≤ r + s"
lemma norm_sum: "norm (sum f A) ≤ (∑i∈A. norm (f i))"
  for f::"'b ⇒ 'a"
lemma sum_norm_le: "norm (sum f S) ≤ sum g S"
  if "⋀x. x ∈ S ⟹ norm (f x) ≤ g x"
  for f::"'b ⇒ 'a"
lemma abs_norm_cancel [simp]: "¦norm a¦ = norm a"
lemma sum_norm_bound:
  "norm (sum f S) ≤ of_nat (card S)*K"
  if "⋀x. x ∈ S ⟹ norm (f x) ≤ K"
  for f :: "'b ⇒ 'a"
lemma norm_add_less: "norm x < r ⟹ norm y < s ⟹ norm (x + y) < r + s"
*)
end

lemma dist_scaleC [simp]: "dist (x *C a) (y *C a) = ¦x - y¦ * norm a"
  for a :: "'a::complex_normed_vector"
  by (metis dist_scaleR scaleR_scaleC)

(* Inherited from real_normed_vector *)
(* lemma norm_mult_less: "norm x < r ⟹ norm y < s ⟹ norm (x * y) < r * s"
  for x y :: "'a::complex_normed_algebra" *)

lemma norm_of_complex [simp]: "norm (of_complex c :: 'a::complex_normed_algebra_1) = cmod c"
  by (simp add: of_complex_def)

(* Inherited from real_normed_vector:
lemma norm_numeral [simp]: "norm (numeral w::'a::complex_normed_algebra_1) = numeral w"
lemma norm_neg_numeral [simp]: "norm (- numeral w::'a::complex_normed_algebra_1) = numeral w"
lemma norm_of_complex_add1 [simp]: "norm (of_real x + 1 :: 'a :: complex_normed_div_algebra) = ¦x + 1¦"
lemma norm_of_complex_addn [simp]:
  "norm (of_real x + numeral b :: 'a :: complex_normed_div_algebra) = ¦x + numeral b¦"
lemma norm_of_int [simp]: "norm (of_int z::'a::complex_normed_algebra_1) = ¦of_int z¦"
lemma norm_of_nat [simp]: "norm (of_nat n::'a::complex_normed_algebra_1) = of_nat n"
lemma nonzero_norm_inverse: "a ≠ 0 ⟹ norm (inverse a) = inverse (norm a)"
  for a :: "'a::complex_normed_div_algebra"
lemma norm_inverse: "norm (inverse a) = inverse (norm a)"
  for a :: "'a::{complex_normed_div_algebra,division_ring}"
lemma nonzero_norm_divide: "b ≠ 0 ⟹ norm (a / b) = norm a / norm b"
  for a b :: "'a::complex_normed_field"
lemma norm_divide: "norm (a / b) = norm a / norm b"
  for a b :: "'a::{complex_normed_field,field}"
lemma norm_inverse_le_norm:
  fixes x :: "'a::complex_normed_div_algebra"
  shows "r ≤ norm x ⟹ 0 < r ⟹ norm (inverse x) ≤ inverse r"
lemma norm_power_ineq: "norm (x ^ n) ≤ norm x ^ n"
  for x :: "'a::complex_normed_algebra_1"
lemma norm_power: "norm (x ^ n) = norm x ^ n"
  for x :: "'a::complex_normed_div_algebra"
lemma norm_power_int: "norm (power_int x n) = power_int (norm x) n"
  for x :: "'a::complex_normed_div_algebra"
lemma power_eq_imp_eq_norm:
  fixes w :: "'a::complex_normed_div_algebra"
  assumes eq: "w ^ n = z ^ n" and "n > 0"
    shows "norm w = norm z"
lemma power_eq_1_iff:
  fixes w :: "'a::complex_normed_div_algebra"
  shows "w ^ n = 1 ⟹ norm w = 1 ∨ n = 0"
lemma norm_mult_numeral1 [simp]: "norm (numeral w * a) = numeral w * norm a"
  for a b :: "'a::{complex_normed_field,field}"
lemma norm_mult_numeral2 [simp]: "norm (a * numeral w) = norm a * numeral w"
  for a b :: "'a::{complex_normed_field,field}"
lemma norm_divide_numeral [simp]: "norm (a / numeral w) = norm a / numeral w"
  for a b :: "'a::{complex_normed_field,field}"
lemma square_norm_one:
  fixes x :: "'a::complex_normed_div_algebra"
  assumes "x2 = 1"
  shows "norm x = 1"
lemma norm_less_p1: "norm x < norm (of_real (norm x) + 1 :: 'a)"
  for x :: "'a::complex_normed_algebra_1"
lemma prod_norm: "prod (λx. norm (f x)) A = norm (prod f A)"
  for f :: "'a ⇒ 'b::{comm_semiring_1,complex_normed_div_algebra}"
lemma norm_prod_le:
  "norm (prod f A) ≤ (∏a∈A. norm (f a :: 'a :: {complex_normed_algebra_1,comm_monoid_mult}))"
lemma norm_prod_diff:
  fixes z w :: "'i ⇒ 'a::{complex_normed_algebra_1, comm_monoid_mult}"
  shows "(⋀i. i ∈ I ⟹ norm (z i) ≤ 1) ⟹ (⋀i. i ∈ I ⟹ norm (w i) ≤ 1) ⟹
    norm ((∏i∈I. z i) - (∏i∈I. w i)) ≤ (∑i∈I. norm (z i - w i))"
lemma norm_power_diff:
  fixes z w :: "'a::{complex_normed_algebra_1, comm_monoid_mult}"
  assumes "norm z ≤ 1" "norm w ≤ 1"
  shows "norm (z^m - w^m) ≤ m * norm (z - w)"
*)

lemma norm_of_complex_add1 [simp]: "norm (of_complex x + 1 :: 'a :: complex_normed_div_algebra) = cmod (x + 1)"
  by (metis norm_of_complex of_complex_1 of_complex_add)

lemma norm_of_complex_addn [simp]:
  "norm (of_complex x + numeral b :: 'a :: complex_normed_div_algebra) = cmod (x + numeral b)"
  by (metis norm_of_complex of_complex_add of_complex_numeral)

lemma norm_of_complex_diff [simp]:
  "norm (of_complex b - of_complex a :: 'a::complex_normed_algebra_1)  cmod (b - a)"
  by (metis norm_of_complex of_complex_diff order_refl)

subsection ‹Metric spaces›

(* Class metric_space is already defined in Real_Vector_Spaces and does not need changing here *)

text ‹Every normed vector space is a metric space.›
(* Already follows from complex_normed_vector < real_normed_vector < metric_space *)
(* instance complex_normed_vector < metric_space *)

subsection ‹Class instances for complex numbers›

instantiation complex :: complex_normed_field
begin

instance
  apply intro_classes
  by (simp add: norm_mult)

end

declare uniformity_Abort[where 'a=complex, code]

lemma dist_of_complex [simp]: "dist (of_complex x :: 'a) (of_complex y) = dist x y"
  for a :: "'a::complex_normed_div_algebra"
  by (metis dist_norm norm_of_complex of_complex_diff)

declare [[code abort: "open :: complex set  bool"]]

(* As far as I can tell, there is no analogue to this for complex:
instance real :: order_topology
instance real :: linear_continuum_topology ..

lemmas open_complex_greaterThan = open_greaterThan[where 'a=complex]
lemmas open_complex_lessThan = open_lessThan[where 'a=complex]
lemmas open_complex_greaterThanLessThan = open_greaterThanLessThan[where 'a=complex]
*)

lemma closed_complex_atMost: ‹closed {..a::complex}
proof -
  have {..a} = Im -` {Im a}  Re -` {..Re a}
    by (auto simp: less_eq_complex_def)
  also have ‹closed 
    by (auto intro!: closed_Int closed_vimage continuous_on_Im continuous_on_Re)
  finally show ?thesis
    by -
qed

lemma closed_complex_atLeast: ‹closed {a::complex..}
proof -
  have {a..} = Im -` {Im a}  Re -` {Re a..}
    by (auto simp: less_eq_complex_def)
  also have ‹closed 
    by (auto intro!: closed_Int closed_vimage continuous_on_Im continuous_on_Re)
  finally show ?thesis
    by -
qed

lemma closed_complex_atLeastAtMost: ‹closed {a::complex .. b}
proof (cases ‹Im a = Im b)
  case True
  have {a..b} = Im -` {Im a}  Re -` {Re a..Re b}
    by (auto simp add: less_eq_complex_def intro!: True)
  also have ‹closed 
    by (auto intro!: closed_Int closed_vimage continuous_on_Im continuous_on_Re)
  finally show ?thesis
    by -
next
  case False
  then have *: {a..b} = {}
    using less_eq_complex_def by auto
  show ?thesis
    by (simp add: *)  
qed

(* As far as I can tell, there is no analogue to this for complex:
instance real :: ordered_real_vector
  by standard (auto intro: mult_left_mono mult_right_mono)
*)

(* subsection ‹Extra type constraints› *)
(* Everything is commented out, so we comment out the heading, too. *)

(* These are already configured in Real_Vector_Spaces:

text ‹Only allow term‹open› in class ‹topological_space›.›
setup ‹Sign.add_const_constraint
  (const_name‹open›, SOME typ‹'a::topological_space set ⇒ bool›)›

text ‹Only allow term‹uniformity› in class ‹uniform_space›.›
setup ‹Sign.add_const_constraint
  (const_name‹uniformity›, SOME typ‹('a::uniformity × 'a) filter›)›

text ‹Only allow term‹dist› in class ‹metric_space›.›
setup ‹Sign.add_const_constraint
  (const_name‹dist›, SOME typ‹'a::metric_space ⇒ 'a ⇒ real›)›

text ‹Only allow term‹norm› in class ‹complex_normed_vector›.›
setup ‹Sign.add_const_constraint
  (const_name‹norm›, SOME typ‹'a::complex_normed_vector ⇒ real›)›
*)

subsection ‹Sign function›

(* Inherited from real_normed_vector: 
lemma norm_sgn: "norm (sgn x) = (if x = 0 then 0 else 1)"
  for x :: "'a::complex_normed_vector"
lemma sgn_zero [simp]: "sgn (0::'a::complex_normed_vector) = 0"
lemma sgn_zero_iff: "sgn x = 0 ⟷ x = 0"
  for x :: "'a::complex_normed_vector"
lemma sgn_minus: "sgn (- x) = - sgn x"
  for x :: "'a::complex_normed_vector"
lemma sgn_one [simp]: "sgn (1::'a::complex_normed_algebra_1) = 1"
lemma sgn_mult: "sgn (x * y) = sgn x * sgn y"
  for x y :: "'a::complex_normed_div_algebra"
hide_fact (open) sgn_mult
lemma norm_conv_dist: "norm x = dist x 0"
declare norm_conv_dist [symmetric, simp]
lemma dist_0_norm [simp]: "dist 0 x = norm x"
  for x :: "'a::complex_normed_vector"
lemma dist_diff [simp]: "dist a (a - b) = norm b"  "dist (a - b) a = norm b"
lemma dist_of_int: "dist (of_int m) (of_int n :: 'a :: complex_normed_algebra_1) = of_int ¦m - n¦"
lemma dist_of_nat:
  "dist (of_nat m) (of_nat n :: 'a :: complex_normed_algebra_1) = of_int ¦int m - int n¦"
*)

lemma sgn_scaleC: "sgn (scaleC r x) = scaleC (sgn r) (sgn x)"
  for x :: "'a::complex_normed_vector"
  by (simp add: scaleR_scaleC sgn_div_norm ac_simps)

lemma sgn_of_complex: "sgn (of_complex r :: 'a::complex_normed_algebra_1) = of_complex (sgn r)"
  unfolding of_complex_def by (simp only: sgn_scaleC sgn_one)

lemma complex_sgn_eq: "sgn x = x / ¦x¦"
  for x :: complex
  by (simp add: abs_complex_def scaleR_scaleC sgn_div_norm divide_inverse)

lemma czero_le_sgn_iff [simp]: "0  sgn x  0  x"
  for x :: complex
  using cmod_eq_Re divide_eq_0_iff less_eq_complex_def by auto

lemma csgn_le_0_iff [simp]: "sgn x  0  x  0"
  for x :: complex
  by (smt (verit, best) czero_le_sgn_iff Im_sgn Re_sgn divide_eq_0_iff dual_order.eq_iff less_eq_complex_def sgn_zero_iff zero_complex.sel(1) zero_complex.sel(2))


subsection ‹Bounded Linear and Bilinear Operators›

lemma clinearI: "clinear f"
  if "b1 b2. f (b1 + b2) = f b1 + f b2"
    "r b. f (r *C b) = r *C f b"
  using that
  by unfold_locales (auto simp: algebra_simps)

lemma clinear_iff:
  "clinear f  (x y. f (x + y) = f x + f y)  (c x. f (c *C x) = c *C f x)"
  (is "clinear f  ?rhs")
proof
  assume "clinear f"
  then interpret f: clinear f .
  show "?rhs"
    by (simp add: f.add f.scale complex_vector.linear_scale f.clinear_axioms)
next
  assume "?rhs"
  then show "clinear f" by (intro clinearI) auto
qed

lemmas clinear_scaleC_left = complex_vector.linear_scale_left
lemmas clinear_imp_scaleC = complex_vector.linear_imp_scale

corollary complex_clinearD:
  fixes f :: "complex  complex"
  assumes "clinear f" obtains c where "f = (*) c"
  by (rule clinear_imp_scaleC [OF assms]) (force simp: scaleC_conv_of_complex)

lemma clinear_times_of_complex: "clinear (λx. a * of_complex x)"
  by (auto intro!: clinearI simp: distrib_left)
    (metis mult_scaleC_right scaleC_conv_of_complex)

locale bounded_clinear = clinear f for f :: "'a::complex_normed_vector  'b::complex_normed_vector" +
  assumes bounded: "K. x. norm (f x)  norm x * K"
begin

(* Not present in Real_Vector_Spaces *)
lemma bounded_linear: "bounded_linear f"
  apply standard
  by (simp_all add: add scaleC scaleR_scaleC bounded)

lemma pos_bounded: "K>0. x. norm (f x)  norm x * K"
proof -
  obtain K where K: "x. norm (f x)  norm x * K"
    using bounded by blast
  show ?thesis
  proof (intro exI impI conjI allI)
    show "0 < max 1 K"
      by (rule order_less_le_trans [OF zero_less_one max.cobounded1])
  next
    fix x
    have "norm (f x)  norm x * K" using K .
    also have "  norm x * max 1 K"
      by (rule mult_left_mono [OF max.cobounded2 norm_ge_zero])
    finally show "norm (f x)  norm x * max 1 K" .
  qed
qed

(* Inherited from bounded_linear *)
lemma nonneg_bounded: "K0. x. norm (f x)  norm x * K"
  by (meson less_imp_le pos_bounded)

lemma clinear: "clinear f"
  by (fact local.clinear_axioms)

end

lemma bounded_clinear_intro:
  assumes "x y. f (x + y) = f x + f y"
    and "r x. f (scaleC r x) = scaleC r (f x)"
    and "x. norm (f x)  norm x * K"
  shows "bounded_clinear f"
  by standard (blast intro: assms)+

locale bounded_cbilinear =
  fixes prod :: "'a::complex_normed_vector  'b::complex_normed_vector  'c::complex_normed_vector"
    (infixl "**" 70)
  assumes add_left: "prod (a + a') b = prod a b + prod a' b"
    and add_right: "prod a (b + b') = prod a b + prod a b'"
    and scaleC_left: "prod (scaleC r a) b = scaleC r (prod a b)"
    and scaleC_right: "prod a (scaleC r b) = scaleC r (prod a b)"
    and bounded: "K. a b. norm (prod a b)  norm a * norm b * K"
begin

(* Not present in Real_Vector_Spaces *)
lemma bounded_bilinear[simp]: "bounded_bilinear prod"
  apply standard
  by (auto simp add: add_left add_right scaleR_scaleC scaleC_left scaleC_right bounded)

(* Not present in Real_Vector_Spaces. Has only temporary effect (until "end") *)
interpretation bounded_bilinear prod
  by simp

lemmas pos_bounded = pos_bounded (* "∃K>0. ∀a b. norm (a ** b) ≤ norm a * norm b * K" *)
lemmas nonneg_bounded = nonneg_bounded (* "∃K≥0. ∀a b. norm (a ** b) ≤ norm a * norm b * K" *)
lemmas additive_right = additive_right (* "additive (λb. prod a b)" *)
lemmas additive_left = additive_left (* "additive (λa. prod a b)" *)
lemmas zero_left = zero_left (* "prod 0 b = 0" *)
lemmas zero_right = zero_right (* "prod a 0 = 0" *)
lemmas minus_left = minus_left (* "prod (- a) b = - prod a b" *)
lemmas minus_right = minus_right (* "prod a (- b) = - prod a b" *)
lemmas diff_left = diff_left (* "prod (a - a') b = prod a b - prod a' b" *)
lemmas diff_right = diff_right (* "prod a (b - b') = prod a b - prod a b'" *)
lemmas sum_left = sum_left (* "prod (sum g S) x = sum ((λi. prod (g i) x)) S" *)
lemmas sum_right = sum_right (* "prod x (sum g S) = sum ((λi. (prod x (g i)))) S" *)
lemmas prod_diff_prod = prod_diff_prod (* "(x ** y - a ** b) = (x - a) ** (y - b) + (x - a) ** b + a ** (y - b)" *)

lemma bounded_clinear_left: "bounded_clinear (λa. a ** b)"
proof -
  obtain K where "a b. norm (a ** b)  norm a * norm b * K"
    using pos_bounded by blast
  then show ?thesis
    by (rule_tac K="norm b * K" in bounded_clinear_intro) (auto simp: algebra_simps scaleC_left add_left)
qed

lemma bounded_clinear_right: "bounded_clinear (λb. a ** b)"
proof -
  obtain K where "a b. norm (a ** b)  norm a * norm b * K"
    using pos_bounded by blast
  then show ?thesis
    by (rule_tac K="norm a * K" in bounded_clinear_intro) (auto simp: algebra_simps scaleC_right add_right)
qed

lemma flip: "bounded_cbilinear (λx y. y ** x)"
proof
  show "K. a b. norm (b ** a)  norm a * norm b * K"
    by (metis bounded mult.commute)
qed (simp_all add: add_right add_left scaleC_right scaleC_left)

lemma comp1:
  assumes "bounded_clinear g"
  shows "bounded_cbilinear (λx. (**) (g x))"
proof
  interpret g: bounded_clinear g by fact
  show "a a' b. g (a + a') ** b = g a ** b + g a' ** b"
    "a b b'. g a ** (b + b') = g a ** b + g a ** b'"
    "r a b. g (r *C a) ** b = r *C (g a ** b)"
    "a r b. g a ** (r *C b) = r *C (g a ** b)"
    by (auto simp: g.add add_left add_right g.scaleC scaleC_left scaleC_right)
  have "bounded_bilinear (λa b. g a ** b)"
    using g.bounded_linear by (rule comp1)
  then show "K. a b. norm (g a ** b)  norm a * norm b * K"
    by (rule bounded_bilinear.bounded)
qed

lemma comp: "bounded_clinear f  bounded_clinear g  bounded_cbilinear (λx y. f x ** g y)"
  by (rule bounded_cbilinear.flip[OF bounded_cbilinear.comp1[OF bounded_cbilinear.flip[OF comp1]]])

end (* locale bounded_cbilinear *)

lemma bounded_clinear_ident[simp]: "bounded_clinear (λx. x)"
  by standard (auto intro!: exI[of _ 1])

lemma bounded_clinear_zero[simp]: "bounded_clinear (λx. 0)"
  by standard (auto intro!: exI[of _ 1])

lemma bounded_clinear_add:
  assumes "bounded_clinear f"
    and "bounded_clinear g"
  shows "bounded_clinear (λx. f x + g x)"
proof -
  interpret f: bounded_clinear f by fact
  interpret g: bounded_clinear g by fact
  show ?thesis
  proof
    from f.bounded obtain Kf where Kf: "norm (f x)  norm x * Kf" for x
      by blast
    from g.bounded obtain Kg where Kg: "norm (g x)  norm x * Kg" for x
      by blast
    show "K. x. norm (f x + g x)  norm x * K"
      using add_mono[OF Kf Kg]
      by (intro exI[of _ "Kf + Kg"]) (auto simp: field_simps intro: norm_triangle_ineq order_trans)
  qed (simp_all add: f.add g.add f.scaleC g.scaleC scaleC_add_right)
qed

lemma bounded_clinear_minus:
  assumes "bounded_clinear f"
  shows "bounded_clinear (λx. - f x)"
proof -
  interpret f: bounded_clinear f by fact
  show ?thesis
    by unfold_locales (simp_all add: f.add f.scaleC f.bounded)
qed

lemma bounded_clinear_sub: "bounded_clinear f  bounded_clinear g  bounded_clinear (λx. f x - g x)"
  using bounded_clinear_add[of f "λx. - g x"] bounded_clinear_minus[of g]
  by (auto simp: algebra_simps)

lemma bounded_clinear_sum:
  fixes f :: "'i  'a::complex_normed_vector  'b::complex_normed_vector"
  shows "(i. i  I  bounded_clinear (f i))  bounded_clinear (λx. iI. f i x)"
  by (induct I rule: infinite_finite_induct) (auto intro!: bounded_clinear_add)

lemma bounded_clinear_compose:
  assumes "bounded_clinear f"
    and "bounded_clinear g"
  shows "bounded_clinear (λx. f (g x))"
proof
  interpret f: bounded_clinear f by fact
  interpret g: bounded_clinear g by fact
  show "f (g (x + y)) = f (g x) + f (g y)" for x y
    by (simp only: f.add g.add)
  show "f (g (scaleC r x)) = scaleC r (f (g x))" for r x
    by (simp only: f.scaleC g.scaleC)
  from f.pos_bounded obtain Kf where f: "x. norm (f x)  norm x * Kf" and Kf: "0 < Kf"
    by blast
  from g.pos_bounded obtain Kg where g: "x. norm (g x)  norm x * Kg"
    by blast
  show "K. x. norm (f (g x))  norm x * K"
  proof (intro exI allI)
    fix x
    have "norm (f (g x))  norm (g x) * Kf"
      using f .
    also have "  (norm x * Kg) * Kf"
      using g Kf [THEN order_less_imp_le] by (rule mult_right_mono)
    also have "(norm x * Kg) * Kf = norm x * (Kg * Kf)"
      by (rule mult.assoc)
    finally show "norm (f (g x))  norm x * (Kg * Kf)" .
  qed
qed

lemma bounded_cbilinear_mult: "bounded_cbilinear ((*) :: 'a  'a  'a::complex_normed_algebra)"
proof (rule bounded_cbilinear.intro)
  show "K. a b::'a. norm (a * b)  norm a * norm b * K"
    by (rule_tac x=1 in exI) (simp add: norm_mult_ineq)
qed (auto simp: algebra_simps)

lemma bounded_clinear_mult_left: "bounded_clinear (λx::'a::complex_normed_algebra. x * y)"
  using bounded_cbilinear_mult
  by (rule bounded_cbilinear.bounded_clinear_left)

lemma bounded_clinear_mult_right: "bounded_clinear (λy::'a::complex_normed_algebra. x * y)"
  using bounded_cbilinear_mult
  by (rule bounded_cbilinear.bounded_clinear_right)

lemmas bounded_clinear_mult_const =
  bounded_clinear_mult_left [THEN bounded_clinear_compose]

lemmas bounded_clinear_const_mult =
  bounded_clinear_mult_right [THEN bounded_clinear_compose]

lemma bounded_clinear_divide: "bounded_clinear (λx. x / y)"
  for y :: "'a::complex_normed_field"
  unfolding divide_inverse by (rule bounded_clinear_mult_left)

lemma bounded_cbilinear_scaleC: "bounded_cbilinear scaleC"
proof (rule bounded_cbilinear.intro)
  obtain K where K: a (b::'a). norm b  norm b * K
    using less_eq_real_def by auto
  show "K. a (b::'a). norm (a *C b)  norm a * norm b * K"
    apply (rule exI[where x=K]) using K
    by (metis norm_scaleC)
qed (auto simp: algebra_simps)

lemma bounded_clinear_scaleC_left: "bounded_clinear (λc. scaleC c x)"
  using bounded_cbilinear_scaleC
  by (rule bounded_cbilinear.bounded_clinear_left)

lemma bounded_clinear_scaleC_right: "bounded_clinear (λx. scaleC c x)"
  using bounded_cbilinear_scaleC
  by (rule bounded_cbilinear.bounded_clinear_right)

lemmas bounded_clinear_scaleC_const =
  bounded_clinear_scaleC_left[THEN bounded_clinear_compose]

lemmas bounded_clinear_const_scaleC =
  bounded_clinear_scaleC_right[THEN bounded_clinear_compose]

lemma bounded_clinear_of_complex: "bounded_clinear (λr. of_complex r)"
  unfolding of_complex_def by (rule bounded_clinear_scaleC_left)

lemma complex_bounded_clinear: "bounded_clinear f  (c::complex. f = (λx. x * c))"
  for f :: "complex  complex"
proof -
  {
    fix x
    assume "bounded_clinear f"
    then interpret bounded_clinear f .
    from scaleC[of x 1] have "f x = x * f 1"
      by simp
  }
  then show ?thesis
    by (auto intro: exI[of _ "f 1"] bounded_clinear_mult_left)
qed

(* Inherited from real_normed_algebra_1 *)
(* instance complex_normed_algebra_1 ⊆ perfect_space *)

(* subsection ‹Filters and Limits on Metric Space› *)
(* Everything is commented out, so we comment out the heading, too. *)

(* Not specific to real/complex *)
(* lemma (in metric_space) nhds_metric: "nhds x = (INF e∈{0 <..}. principal {y. dist y x < e})" *)
(* lemma (in metric_space) tendsto_iff: "(f ⤏ l) F ⟷ (∀e>0. eventually (λx. dist (f x) l < e) F)" *)
(* lemma tendsto_dist_iff: "((f ⤏ l) F) ⟷ (((λx. dist (f x) l) ⤏ 0) F)" *)
(* lemma (in metric_space) tendstoI [intro?]:
  "(⋀e. 0 < e ⟹ eventually (λx. dist (f x) l < e) F) ⟹ (f ⤏ l) F" *)
(* lemma (in metric_space) tendstoD: "(f ⤏ l) F ⟹ 0 < e ⟹ eventually (λx. dist (f x) l < e) F" *)
(* lemma (in metric_space) eventually_nhds_metric:
  "eventually P (nhds a) ⟷ (∃d>0. ∀x. dist x a < d ⟶ P x)" *)
(* lemma eventually_at: "eventually P (at a within S) ⟷ (∃d>0. ∀x∈S. x ≠ a ∧ dist x a < d ⟶ P x)"
  for a :: "'a :: metric_space" *)
(* lemma frequently_at: "frequently P (at a within S) ⟷ (∀d>0. ∃x∈S. x ≠ a ∧ dist x a < d ∧ P x)"
  for a :: "'a :: metric_space" *)
(* lemma eventually_at_le: "eventually P (at a within S) ⟷ (∃d>0. ∀x∈S. x ≠ a ∧ dist x a ≤ d ⟶ P x)"
  for a :: "'a::metric_space" *)

(* Does not work in complex case because it needs complex :: order_toplogy *)
(* lemma eventually_at_left_real: "a > (b :: real) ⟹ eventually (λx. x ∈ {b<..<a}) (at_left a)" *)
(* lemma eventually_at_right_real: "a < (b :: real) ⟹ eventually (λx. x ∈ {a<..<b}) (at_right a)" *)

(* Not specific to real/complex *)
(* lemma metric_tendsto_imp_tendsto:
  fixes a :: "'a :: metric_space"
    and b :: "'b :: metric_space"
  assumes f: "(f ⤏ a) F"
    and le: "eventually (λx. dist (g x) b ≤ dist (f x) a) F"
  shows "(g ⤏ b) F" *)

(* Not sure if this makes sense in the complex case *)
(* lemma filterlim_complex_sequentially: "LIM x sequentially. (of_nat x :: complex) :> at_top" *)

(* Not specific to real/complex *)
(* lemma filterlim_nat_sequentially: "filterlim nat sequentially at_top" *)
(* lemma filterlim_floor_sequentially: "filterlim floor at_top at_top" *)

(* Not sure if this makes sense in the complex case *)
(* lemma filterlim_sequentially_iff_filterlim_real:
  "filterlim f sequentially F ⟷ filterlim (λx. real (f x)) at_top F" (is "?lhs = ?rhs") *)


subsubsection ‹Limits of Sequences›

(* Not specific to real/complex *)
(* lemma lim_sequentially: "X ⇢ L ⟷ (∀r>0. ∃no. ∀n≥no. dist (X n) L < r)"
  for L :: "'a::metric_space" *)
(* lemmas LIMSEQ_def = lim_sequentially  (*legacy binding*) *)
(* lemma LIMSEQ_iff_nz: "X ⇢ L ⟷ (∀r>0. ∃no>0. ∀n≥no. dist (X n) L < r)"
  for L :: "'a::metric_space" *)
(* lemma metric_LIMSEQ_I: "(⋀r. 0 < r ⟹ ∃no. ∀n≥no. dist (X n) L < r) ⟹ X ⇢ L"
  for L :: "'a::metric_space" *)
(* lemma metric_LIMSEQ_D: "X ⇢ L ⟹ 0 < r ⟹ ∃no. ∀n≥no. dist (X n) L < r"
  for L :: "'a::metric_space" *)
(* lemma LIMSEQ_norm_0:
  assumes  "⋀n::nat. norm (f n) < 1 / real (Suc n)"
  shows "f ⇢ 0" *)

(* subsubsection ‹Limits of Functions› *)
(* Everything is commented out, so we comment out the heading, too. *)

(* Not specific to real/complex *)
(* lemma LIM_def: "f ─a→ L ⟷ (∀r > 0. ∃s > 0. ∀x. x ≠ a ∧ dist x a < s ⟶ dist (f x) L < r)"
  for a :: "'a::metric_space" and L :: "'b::metric_space" *)
(* lemma metric_LIM_I:
  "(⋀r. 0 < r ⟹ ∃s>0. ∀x. x ≠ a ∧ dist x a < s ⟶ dist (f x) L < r) ⟹ f ─a→ L"
  for a :: "'a::metric_space" and L :: "'b::metric_space" *)
(* lemma metric_LIM_D: "f ─a→ L ⟹ 0 < r ⟹ ∃s>0. ∀x. x ≠ a ∧ dist x a < s ⟶ dist (f x) L < r"
  for a :: "'a::metric_space" and L :: "'b::metric_space" *)
(* lemma metric_LIM_imp_LIM:
  fixes l :: "'a::metric_space"
    and m :: "'b::metric_space"
  assumes f: "f ─a→ l"
    and le: "⋀x. x ≠ a ⟹ dist (g x) m ≤ dist (f x) l"
  shows "g ─a→ m" *)
(* lemma metric_LIM_equal2:
  fixes a :: "'a::metric_space"
  assumes "g ─a→ l" "0 < R"
    and "⋀x. x ≠ a ⟹ dist x a < R ⟹ f x = g x"
  shows "f ─a→ l" *)
(* lemma metric_LIM_compose2:
  fixes a :: "'a::metric_space"
  assumes f: "f ─a→ b"
    and g: "g ─b→ c"
    and inj: "∃d>0. ∀x. x ≠ a ∧ dist x a < d ⟶ f x ≠ b"
  shows "(λx. g (f x)) ─a→ c" *)
(* lemma metric_isCont_LIM_compose2:
  fixes f :: "'a :: metric_space ⇒ _"
  assumes f [unfolded isCont_def]: "isCont f a"
    and g: "g ─f a→ l"
    and inj: "∃d>0. ∀x. x ≠ a ∧ dist x a < d ⟶ f x ≠ f a"
  shows "(λx. g (f x)) ─a→ l" *)


(* subsection ‹Complete metric spaces› *)
(* Everything is commented out, so we comment out the heading, too. *)

subsection ‹Cauchy sequences›

(* Not specific to real/complex *)
(* lemma (in metric_space) Cauchy_def: "Cauchy X = (∀e>0. ∃M. ∀m≥M. ∀n≥M. dist (X m) (X n) < e)" *)
(* lemma (in metric_space) Cauchy_altdef: "Cauchy f ⟷ (∀e>0. ∃M. ∀m≥M. ∀n>m. dist (f m) (f n) < e)" *)
(* lemma (in metric_space) Cauchy_altdef2: "Cauchy s ⟷ (∀e>0. ∃N::nat. ∀n≥N. dist(s n)(s N) < e)" (is "?lhs = ?rhs") *)
(* lemma (in metric_space) metric_CauchyI:
  "(⋀e. 0 < e ⟹ ∃M. ∀m≥M. ∀n≥M. dist (X m) (X n) < e) ⟹ Cauchy X" *)
(* lemma (in metric_space) CauchyI':
  "(⋀e. 0 < e ⟹ ∃M. ∀m≥M. ∀n>m. dist (X m) (X n) < e) ⟹ Cauchy X" *)
(* lemma (in metric_space) metric_CauchyD:
  "Cauchy X ⟹ 0 < e ⟹ ∃M. ∀m≥M. ∀n≥M. dist (X m) (X n) < e" *)
(* lemma (in metric_space) metric_Cauchy_iff2:
  "Cauchy X = (∀j. (∃M. ∀m ≥ M. ∀n ≥ M. dist (X m) (X n) < inverse(real (Suc j))))" *)

lemma cCauchy_iff2: "Cauchy X  (j. (M. m  M. n  M. cmod (X m - X n) < inverse (real (Suc j))))"
  by (simp only: metric_Cauchy_iff2 dist_complex_def)

(* Not specific to real/complex *)
(* lemma lim_1_over_n [tendsto_intros]: "((λn. 1 / of_nat n) ⤏ (0::'a::complex_normed_field)) sequentially" *)
(* lemma (in metric_space) complete_def:
  shows "complete S = (∀f. (∀n. f n ∈ S) ∧ Cauchy f ⟶ (∃l∈S. f ⇢ l))" *)
(* lemma (in metric_space) totally_bounded_metric:
  "totally_bounded S ⟷ (∀e>0. ∃k. finite k ∧ S ⊆ (⋃x∈k. {y. dist x y < e}))" *)

(* subsubsection ‹Cauchy Sequences are Convergent› *)
(* Everything is commented out, so we comment out the heading, too. *)

(* Not specific to real/complex *)
(* class complete_space *)
(* lemma Cauchy_convergent_iff: "Cauchy X ⟷ convergent X"
  for X :: "nat ⇒ 'a::complete_space" *)

(* text ‹To prove that a Cauchy sequence converges, it suffices to show that a subsequence converges.› *)

(* Not specific to real/complex *)
(* lemma Cauchy_converges_subseq:
  fixes u::"nat ⇒ 'a::metric_space"
  assumes "Cauchy u"
    "strict_mono r"
    "(u ∘ r) ⇢ l"
  shows "u ⇢ l" *)

subsection ‹The set of real numbers is a complete metric space›

text ‹
  Proof that Cauchy sequences converge based on the one from
  🌐‹http://pirate.shu.edu/~wachsmut/ira/numseq/proofs/cauconv.html›

text ‹
  If sequence termX is Cauchy, then its limit is the lub of
  term{r::real. N. nN. r < X n}

lemma complex_increasing_LIMSEQ:
  fixes f :: "nat  complex"
  assumes inc: "n. f n  f (Suc n)"
    and bdd: "n. f n  l"
    and en: "e. 0 < e  n. l  f n + e"
  shows "f  l"
proof -
  have (λn. Re (f n))  Re l
    apply (rule increasing_LIMSEQ)
    using assms apply (auto simp: less_eq_complex_def less_complex_def)
    by (metis Im_complex_of_real Re_complex_of_real)
  moreover have ‹Im (f n) = Im l for n
    using bdd by (auto simp: less_eq_complex_def)
  then have (λn. Im (f n))  Im l
    by auto
  ultimately show f  l
    by (simp add: tendsto_complex_iff)
qed

lemma complex_Cauchy_convergent:
  fixes X :: "nat  complex"
  assumes X: "Cauchy X"
  shows "convergent X"
  using assms by (rule Cauchy_convergent)

instance complex :: complete_space
  by intro_classes (rule complex_Cauchy_convergent)

class cbanach = complex_normed_vector + complete_space

(* Not present in Real_Vector_Spaces *)
subclass (in cbanach) banach ..

instance complex :: banach ..

(* Don't know if this holds in the complex case *)
(* lemma tendsto_at_topI_sequentially:
  fixes f :: "complex ⇒ 'b::first_countable_topology"
  assumes *: "⋀X. filterlim X at_top sequentially ⟹ (λn. f (X n)) ⇢ y"
  shows "(f ⤏ y) at_top" *)
(* lemma tendsto_at_topI_sequentially_real:
  fixes f :: "real ⇒ real"
  assumes mono: "mono f"
    and limseq: "(λn. f (real n)) ⇢ y"
  shows "(f ⤏ y) at_top" *)

end

Theory Complex_Vector_Spaces

section Complex_Vector_Spaces› -- Complex Vector Spaces›

(*
Authors: 

  Dominique Unruh, University of Tartu, unruh@ut.ee
  Jose Manuel Rodriguez Caballero, University of Tartu, jose.manuel.rodriguez.caballero@ut.ee
*)

theory Complex_Vector_Spaces
  imports
    "HOL-Analysis.Elementary_Topology"
    "HOL-Analysis.Operator_Norm"
    "HOL-Analysis.Elementary_Normed_Spaces"
    "HOL-Library.Set_Algebras"
    "HOL-Analysis.Starlike"
    "HOL-Types_To_Sets.Types_To_Sets"

    "Complex_Bounded_Operators.Extra_Vector_Spaces"
    "Complex_Bounded_Operators.Extra_Ordered_Fields"
    "Complex_Bounded_Operators.Extra_Lattice"
    "Complex_Bounded_Operators.Extra_General"

    Complex_Vector_Spaces0
begin

bundle notation_norm begin
notation norm ("_")
end

subsection ‹Misc›

lemma (in scaleC) scaleC_real: assumes "r" shows "r *C x = Re r *R x"
  unfolding scaleR_scaleC using assms by simp

lemma of_complex_of_real_eq [simp]: "of_complex (of_real n) = of_real n"
  unfolding of_complex_def of_real_def unfolding scaleR_scaleC by simp

lemma Complexs_of_real [simp]: "of_real r  "
  unfolding Complexs_def of_real_def of_complex_def 
  apply (subst scaleR_scaleC) by simp

lemma Reals_in_Complexs: "  "
  unfolding Reals_def by auto

lemma (in clinear) "linear f"
  apply standard
  by (simp_all add: add scaleC scaleR_scaleC)

lemma (in bounded_clinear) bounded_linear: "bounded_linear f"
  by (simp add: add bounded bounded_linear.intro bounded_linear_axioms.intro linearI scaleC scaleR_scaleC)

lemma clinear_times: "clinear (λx. c * x)"
  for c :: "'a::complex_algebra"
  by (auto simp: clinearI distrib_left)

lemma (in clinear) linear:
  shows ‹linear f
  by (simp add: add linearI scaleC scaleR_scaleC)

lemma bounded_clinearI:
  assumes b1 b2. f (b1 + b2) = f b1 + f b2
  assumes r b. f (r *C b) = r *C f b
  assumes x. norm (f x)  norm x * K
  shows "bounded_clinear f"
  using assms by (auto intro!: exI bounded_clinear.intro clinearI simp: bounded_clinear_axioms_def)

lemma bounded_clinear_id[simp]: ‹bounded_clinear id›
  by (simp add: id_def)

(* The following would be a natural inclusion of locales, but unfortunately it leads to
   name conflicts upon interpretation of bounded_cbilinear *)
(* sublocale bounded_cbilinear ⊆ bounded_bilinear
  by (rule bounded_bilinear) *)


definition cbilinear :: ('a::complex_vector  'b::complex_vector  'c::complex_vector)  bool›
  where cbilinear = (λ f. ( y. clinear (λ x. f x y))  ( x. clinear (λ y. f x y)) )

lemma cbilinear_add_left:
  assumes ‹cbilinear f
  shows f (a + b) c = f a c + f b c
  by (smt (verit, del_insts) assms cbilinear_def complex_vector.linear_add)

lemma cbilinear_add_right:
  assumes ‹cbilinear f
  shows f a (b + c) = f a b + f a c
  by (smt (verit, del_insts) assms cbilinear_def complex_vector.linear_add)

lemma cbilinear_times:
  fixes g' :: 'a::complex_vector  complex› and g :: 'b::complex_vector  complex›
  assumes  x y. h x y = (g' x)*(g y) and ‹clinear g and ‹clinear g'
  shows ‹cbilinear h
proof -
  have w1: "h (b1 + b2) y = h b1 y + h b2 y"
    for b1 :: 'a
      and b2 :: 'a
      and y
  proof-
    have h (b1 + b2) y = g' (b1 + b2) * g y
      using  x y. h x y = (g' x)*(g y)
      by auto
    also have  = (g' b1 + g' b2) * g y
      using ‹clinear g'
      unfolding clinear_def
      by (simp add: assms(3) complex_vector.linear_add)
    also have  = g' b1 * g y + g' b2 * g y
      by (simp add: ring_class.ring_distribs(2))
    also have  = h b1 y + h b2 y
      using assms(1) by auto          
    finally show ?thesis by blast
  qed
  have w2: "h (r *C b) y = r *C h b y"
    for r :: complex
      and b :: 'a
      and y
  proof-
    have h (r *C b) y = g' (r *C b) * g y
      by (simp add: assms(1))
    also have  = r *C (g' b * g y)
      by (simp add: assms(3) complex_vector.linear_scale)
    also have  = r *C (h b y)
      by (simp add: assms(1))          
    finally show ?thesis by blast
  qed
  have "clinear (λx. h x y)"
    for y :: 'b
    unfolding clinear_def
    by (meson clinearI clinear_def w1 w2)
  hence t2: "y. clinear (λx. h x y)"
    by simp
  have v1: "h x (b1 + b2) = h x b1 + h x b2"
    for b1 :: 'b
      and b2 :: 'b
      and x
  proof-
    have h x (b1 + b2)  = g' x * g (b1 + b2)
      using  x y. h x y = (g' x)*(g y)
      by auto
    also have  = g' x * (g b1 + g b2)
      using ‹clinear g'
      unfolding clinear_def
      by (simp add: assms(2) complex_vector.linear_add)
    also have  = g' x * g b1 + g' x * g b2
      by (simp add: ring_class.ring_distribs(1))
    also have  = h x b1 + h x b2
      using assms(1) by auto          
    finally show ?thesis by blast
  qed

  have v2:  "h x (r *C b) = r *C h x b"
    for r :: complex
      and b :: 'b
      and x
  proof-
    have h x (r *C b) =  g' x * g (r *C b)
      by (simp add: assms(1))
    also have  = r *C (g' x * g b)
      by (simp add: assms(2) complex_vector.linear_scale)
    also have  = r *C (h x b)
      by (simp add: assms(1))          
    finally show ?thesis by blast
  qed
  have "Vector_Spaces.linear (*C) (*C) (h x)"
    for x :: 'a
    using v1 v2
    by (meson clinearI clinear_def) 
  hence t1: "x. clinear (h x)"
    unfolding clinear_def
    by simp
  show ?thesis
    unfolding cbilinear_def
    by (simp add: t1 t2)    
qed

lemma csubspace_is_subspace: "csubspace A  subspace A"
  apply (rule subspaceI) 
  by (auto simp: complex_vector.subspace_def scaleR_scaleC)

lemma span_subset_cspan: "span A  cspan A"
  unfolding span_def complex_vector.span_def
  by (simp add: csubspace_is_subspace hull_antimono)


lemma cindependent_implies_independent: 
  assumes "cindependent (S::'a::complex_vector set)"
  shows "independent S"
  using assms unfolding dependent_def complex_vector.dependent_def
  using span_subset_cspan by blast

lemma cspan_singleton: "cspan {x} = {α *C x| α. True}"
proof -
  have ‹cspan {x} = {y. ycspan {x}}
    by auto
  also have  = {α *C x| α. True}
    apply (subst complex_vector.span_breakdown_eq)
    by auto
  finally show ?thesis
    by -
qed


lemma cspan_as_span:
  "cspan (B::'a::complex_vector set) = span (B  scaleC 𝗂 ` B)"
proof auto
  let ?cspan = complex_vector.span
  let ?rspan = real_vector.span
  fix ψ
  assume cspan: "ψ  ?cspan B"
  have "B' r. finite B'  B'  B  ψ = (bB'. r b *C b)"
    using complex_vector.span_explicit[of B] cspan
    by auto
  then obtain B' r where "finite B'" and "B'  B" and ψ_explicit: "ψ = (bB'. r b *C b)"
    by atomize_elim 
  define R where "R = B  scaleC 𝗂 ` B"

  have x2: "(case x of (b, i)  if i 
            then Im (r b) *R 𝗂 *C b 
            else Re (r b) *R b)  span (B  (*C) 𝗂 ` B)"
    if "x  B' × (UNIV::bool set)"
    for x :: "'a × bool"
    using that B'  B by (auto simp add: real_vector.span_base real_vector.span_scale subset_iff)
  have x1: "ψ = (xB'. iUNIV. if i then Im (r x) *R 𝗂 *C x else Re (r x) *R x)"
    if "b. r b *C b = Re (r b) *R b + Im (r b) *R 𝗂 *C b"
    using that by (simp add: UNIV_bool ψ_explicit)
  moreover have "r b *C b = Re (r b) *R b + Im (r b) *R 𝗂 *C b" for b
    using complex_eq scaleC_add_left scaleC_scaleC scaleR_scaleC
    by (metis (no_types, lifting) complex_of_real_i i_complex_of_real)
  ultimately have "ψ = ((b,i)(B'×UNIV). if i then Im (r b) *R (𝗂 *C b) else Re (r b) *R b)"
    by (simp add: sum.cartesian_product)     
  also have "  ?rspan R"
    unfolding R_def
    using x2
    by (rule real_vector.span_sum) 
  finally show "ψ  ?rspan R" by -
next
  let ?cspan = complex_vector.span
  let ?rspan = real_vector.span
  define R where "R = B  scaleC 𝗂 ` B"
  fix ψ
  assume rspan: "ψ  ?rspan R"
  have "subspace {a. a  cspan B}"
    by (rule real_vector.subspaceI, auto simp add: complex_vector.span_zero 
        complex_vector.span_add_eq2 complex_vector.span_scale scaleR_scaleC)
  moreover have "x  cspan B"
    if "x  R"
    for x :: 'a
    using that R_def complex_vector.span_base complex_vector.span_scale by fastforce
  ultimately show "ψ  ?cspan B"
    using real_vector.span_induct rspan by blast  
qed


lemma isomorphic_equal_cdim:
  assumes lin_f: ‹clinear f
  assumes inj_f: ‹inj_on f (cspan S)
  assumes im_S: f ` S = T
  shows ‹cdim S = cdim T
proof -
  obtain SB where SB_span: "cspan SB = cspan S" and indep_SB: ‹cindependent SB
    by (metis complex_vector.basis_exists complex_vector.span_mono complex_vector.span_span subset_antisym)
  with lin_f inj_f have indep_fSB: ‹cindependent (f ` SB)
    apply (rule_tac complex_vector.linear_independent_injective_image)
    by auto
  from lin_f have ‹cspan (f ` SB) = f ` cspan SB
    by (meson complex_vector.linear_span_image)
  also from SB_span lin_f have  = cspan T
    by (metis complex_vector.linear_span_image im_S)
  finally have ‹cdim T = card (f ` SB)
    using indep_fSB complex_vector.dim_eq_card by blast
  also have  = card SB
    apply (rule card_image) using inj_f
    by (metis SB_span complex_vector.linear_inj_on_span_iff_independent_image indep_fSB lin_f)
  also have  = cdim S
    using indep_SB SB_span
    by (metis complex_vector.dim_eq_card)
  finally show ?thesis by simp
qed


lemma cindependent_inter_scaleC_cindependent:
  assumes a1: "cindependent (B::'a::complex_vector set)" and a3: "c  1"
  shows "B  (*C) c ` B = {}"
proof (rule classical, cases c = 0)
  case True
  then show ?thesis
    using a1 by (auto simp add: complex_vector.dependent_zero)
next
  case False
  assume "¬(B  (*C) c ` B = {})"
  hence "B  (*C) c ` B  {}"
    by blast
  then obtain x where u1: "x  B  (*C) c ` B"
    by blast
  then obtain b where u2: "x = b" and u3: "bB"
    by blast
  then  obtain b' where u2': "x = c *C b'" and u3': "b'B"
    using u1
    by blast
  have g1: "b = c *C b'"
    using u2 and u2' by simp
  hence "b  complex_vector.span {b'}"
    using False
    by (simp add: complex_vector.span_base complex_vector.span_scale)
  hence "b = b'"
    by (metis  u3' a1 complex_vector.dependent_def complex_vector.span_base 
        complex_vector.span_scale insertE insert_Diff u2 u2' u3) 
  hence "b' = c *C b'"
    using g1 by blast
  thus ?thesis
    by (metis a1 a3 complex_vector.dependent_zero complex_vector.scale_right_imp_eq
        mult_cancel_right2 scaleC_scaleC u3')
qed

lemma real_independent_from_complex_independent:
  assumes "cindependent (B::'a::complex_vector set)"
  defines "B' == ((*C) 𝗂 ` B)"
  shows "independent (B  B')"
proof (rule notI)
  assume ‹dependent (B  B')
  then obtain T f0 x where [simp]: ‹finite T and T  B  B' and f0_sum: (vT. f0 v *R v) = 0
    and x: x  T and f0_x: f0 x  0
    by (auto simp: real_vector.dependent_explicit)
  define f T1 T2 T' f' x' where f v = (if v  T then f0 v else 0) 
    and T1 = T  B and T2 = scaleC (-𝗂) ` (T  B')
    and T' = T1  T2 and f' v = f v + 𝗂 * f (𝗂 *C v)
    and x' = (if x  T1 then x else -𝗂 *C x) for v
  have B  B' = {}
    by (simp add: assms cindependent_inter_scaleC_cindependent)
  have T'  B 
    by (auto simp: T'_def T1_def T2_def B'_def)
  have [simp]: ‹finite T' ‹finite T1 ‹finite T2
    by (auto simp add: T'_def T1_def T2_def)
  have f_sum: (vT. f v *R v) = 0
    unfolding f_def using f0_sum by auto
  have f_x: f x  0
    using f0_x x by (auto simp: f_def)
  have f'_sum: (vT'. f' v *C v) = 0
  proof -
    have (vT'. f' v *C v) = (vT'. complex_of_real (f v) *C v) + (vT'. (𝗂 * complex_of_real (f (𝗂 *C v))) *C v)
      by (auto simp: f'_def sum.distrib scaleC_add_left)
    also have (vT'. complex_of_real (f v) *C v) = (vT1. f v *R v) (is _ = ?left)
      apply (auto simp: T'_def scaleR_scaleC intro!: sum.mono_neutral_cong_right)
      using T'_def T1_def T'  B f_def by auto
    also have (vT'. (𝗂 * complex_of_real (f (𝗂 *C v))) *C v) = (vT2. (𝗂 * complex_of_real (f (𝗂 *C v))) *C v) (is _ = ?right)
      apply (auto simp: T'_def intro!: sum.mono_neutral_cong_right)
      by (smt (z3) B'_def IntE IntI T1_def T2_def f  λv. if v  T then f0 v else 0 add.inverse_inverse complex_vector.vector_space_axioms i_squared imageI mult_minus_left vector_space.vector_space_assms(3) vector_space.vector_space_assms(4))
    also have ?right = (vTB'. f v *R v) (is _ = ?right)
      apply (rule sum.reindex_cong[symmetric, where l=‹scaleC 𝗂])
        apply (auto simp: T2_def image_image scaleR_scaleC)
      using inj_on_def by fastforce
    also have ?left + ?right = (vT. f v *R v)
      apply (subst sum.union_disjoint[symmetric])
      using B  B' = {} T  B  B' apply (auto simp: T1_def)
      by (metis Int_Un_distrib Un_Int_eq(4) sup.absorb_iff1)
    also have  = 0
      by (rule f_sum)
    finally show ?thesis
      by -
  qed

  have x': x'  T'
    using T  B  B' x by (auto simp: x'_def T'_def T1_def T2_def)

  have f'_x': f' x'  0
    using Complex_eq Complex_eq_0 f'_def f_x x'_def by auto

  from ‹finite T' T'  B f'_sum x' f'_x'
  have ‹cdependent B
    using complex_vector.independent_explicit_module by blast
  with assms show False
    by auto
qed

lemma crepresentation_from_representation: 
  assumes a1: "cindependent B" and a2: "b  B" and a3: "finite B"
  shows "crepresentation B ψ b = (representation (B  (*C) 𝗂 ` B) ψ b)
                           + 𝗂 *C (representation (B  (*C) 𝗂 ` B) ψ (𝗂 *C b))"
proof (cases "ψ  cspan B")
  define B' where "B' = B  (*C) 𝗂 ` B"
  case True
  define r  where "r v = real_vector.representation B' ψ v" for v
  define r' where "r' v = real_vector.representation B' ψ (𝗂 *C v)" for v
  define f  where "f v = r v + 𝗂 *C r' v" for v
  define g  where "g v = crepresentation B ψ v" for v
  have "(v | g v  0. g v *C v) = ψ"
    unfolding g_def
    using Collect_cong Collect_mono_iff DiffD1 DiffD2 True a1 
      complex_vector.finite_representation
      complex_vector.sum_nonzero_representation_eq sum.mono_neutral_cong_left
    by fastforce
  moreover have "finite {v. g v  0}"
    unfolding g_def
    by (simp add: complex_vector.finite_representation)
  moreover have "v  B"
    if "g v  0" for v
    using that unfolding g_def
    by (simp add: complex_vector.representation_ne_zero)        
  ultimately have rep1: "(vB. g v *C v) = ψ"    
    unfolding g_def
    using a3 True a1 complex_vector.sum_representation_eq by blast
  have l0': "inj ((*C) 𝗂::'a 'a)"
    unfolding inj_def 
    by simp 
  have l0: "inj ((*C) (- 𝗂)::'a 'a)"
    unfolding inj_def 
    by simp 
  have l1: "(*C) (- 𝗂) ` B  B = {}"
    using cindependent_inter_scaleC_cindependent[where B=B and c = "- 𝗂"]
    by (metis Int_commute a1 add.inverse_inverse complex_i_not_one i_squared mult_cancel_left1 
        neg_equal_0_iff_equal)
  have l2: "B  (*C) 𝗂 ` B = {}"
    by (simp add: a1 cindependent_inter_scaleC_cindependent)
  have rr1: "r (𝗂 *C v) = r' v" for v
    unfolding r_def r'_def
    by simp 
  have k1: "independent B'"
    unfolding B'_def using a1 real_independent_from_complex_independent by simp
  have "ψ  span B'"
    using B'_def True cspan_as_span by blast    
  have "v  B'"
    if "r v  0"
    for v
    unfolding r_def
    using r_def real_vector.representation_ne_zero that by auto
  have "finite B'"
    unfolding B'_def using a3
    by simp 
  have "(vB'. r v *R v) = ψ"
    unfolding r_def 
    using True  Real_Vector_Spaces.real_vector.sum_representation_eq[where B = B' and basis = B' 
        and v = ψ]  
    by (smt Real_Vector_Spaces.dependent_raw_def ψ  Real_Vector_Spaces.span B' ‹finite B' 
        equalityD2 k1)
  have d1: "(vB. r (𝗂 *C v) *R (𝗂 *C v)) = (v(*C) 𝗂 ` B. r v *R v)"
    using l0'
    by (metis (mono_tags, lifting) inj_eq inj_on_def sum.reindex_cong)
  have "(vB. (r v + 𝗂 * (r' v)) *C v) = (vB. r v *C v + (𝗂 * r' v) *C v)"
    by (meson scaleC_left.add)
  also have " = (vB. r v *C v) + (vB. (𝗂 * r' v) *C v)"
    using sum.distrib by fastforce
  also have " = (vB. r v *C v) + (vB. 𝗂 *C (r' v *C v))"
    by auto
  also have " = (vB. r v *R v) + (vB. 𝗂 *C (r (𝗂 *C v) *R v))"
    unfolding r'_def r_def
    by (metis (mono_tags, lifting) scaleR_scaleC sum.cong) 
  also have " = (vB. r v *R v) + (vB. r (𝗂 *C v) *R (𝗂 *C v))"
    by (metis (no_types, lifting) complex_vector.scale_left_commute scaleR_scaleC)      
  also have " = (vB. r v *R v) + (v(*C) 𝗂 ` B. r v *R v)"
    using d1
    by simp
  also have " = ψ"
    using l2 (vB'. r v *R v) = ψ
    unfolding B'_def
    by (simp add: a3 sum.union_disjoint) 
  finally have "(vB. f v *C v) = ψ" unfolding r'_def r_def f_def by simp
  hence "0 = (vB. f v *C v) - (vB. crepresentation B ψ v *C v)"
    using rep1
    unfolding g_def
    by simp
  also have " = (vB. f v *C v - crepresentation B ψ v *C v)"
    by (simp add: sum_subtractf)
  also have " = (vB. (f v - crepresentation B ψ v) *C v)"
    by (metis scaleC_left.diff)
  finally have "0 = (vB. (f v - crepresentation B ψ v) *C v)".
  hence "(vB. (f v - crepresentation B ψ v) *C v) = 0"
    by simp
  hence "f b - crepresentation B ψ b = 0"
    using a1 a2 a3 complex_vector.independentD[where s = B and t = B 
        and u = "λv. f v - crepresentation B ψ v" and v = b]
      order_refl  by smt
  hence "crepresentation B ψ b = f b"
    by simp
  thus ?thesis unfolding f_def r_def r'_def B'_def by auto
next
  define B' where "B' = B  (*C) 𝗂 ` B"
  case False
  have b2: "ψ  real_vector.span B'"
    unfolding B'_def
    using False cspan_as_span by auto    
  have "ψ  complex_vector.span B"
    using False by blast
  have "crepresentation B ψ b = 0"
    unfolding complex_vector.representation_def
    by (simp add: False)
  moreover have "real_vector.representation B' ψ b = 0"
    unfolding real_vector.representation_def
    by (simp add: b2)
  moreover have "real_vector.representation B' ψ ((*C) 𝗂 b) = 0"
    unfolding real_vector.representation_def
    by (simp add: b2)
  ultimately show ?thesis unfolding B'_def by simp
qed


lemma CARD_1_vec_0[simp]: (ψ :: _ ::{complex_vector,CARD_1}) = 0
  by auto


lemma scaleC_cindependent:
  assumes a1: "cindependent (B::'a::complex_vector set)" and a3: "c  0"
  shows "cindependent ((*C) c ` B)"
proof-
  have "u y = 0"
    if g1: "yS" and g2: "(xS. u x *C x) = 0" and g3: "finite S" and g4: "S(*C) c ` B"
    for u y S
  proof-
    define v where "v x = u (c *C x)" for x
    obtain S' where "S'B" and S_S': "S = (*C) c ` S'"
      by (meson g4 subset_imageE)      
    have "inj ((*C) c::'a_)"
      unfolding inj_def
      using a3 by auto 
    hence "finite S'"
      using S_S' finite_imageD g3 subset_inj_on by blast            
    have "t  (*C) (inverse c) ` S"
      if "t  S'" for t
    proof-
      have "c *C t  S"
        using S = (*C) c ` S' that by blast
      hence "(inverse c) *C (c *C t)  (*C) (inverse c) ` S"
        by blast
      moreover have "(inverse c) *C (c *C t) = t"
        by (simp add: a3)
      ultimately show ?thesis by simp
    qed
    moreover have "t  S'"
      if "t  (*C) (inverse c) ` S" for t
    proof-
      obtain t' where "t = (inverse c) *C t'" and "t'  S"
        using t  (*C) (inverse c) ` S by auto
      have "c *C t = c *C ((inverse c) *C t')"
        using t = (inverse c) *C t' by simp
      also have " = (c * (inverse c)) *C t'"
        by simp
      also have " = t'"
        by (simp add: a3)
      finally have "c *C t = t'".
      thus ?thesis using t'  S
        using S = (*C) c ` S' a3 complex_vector.scale_left_imp_eq by blast 
    qed
    ultimately have "S' = (*C) (inverse c) ` S"
      by blast 
    hence "inverse c *C y  S'"
      using that(1) by blast 
    have t: "inj (((*C) c)::'a  _)"
      using a3 complex_vector.injective_scale[where c = c]
      by blast
    have "0 = (x(*C) c ` S'. u x *C x)"
      using S = (*C) c ` S' that(2) by auto
    also have " = (xS'. v x *C (c *C x))"
      unfolding v_def
      using t Groups_Big.comm_monoid_add_class.sum.reindex[where h = "((*C) c)" and A = S' 
          and g = "λx. u x *C x"] subset_inj_on by auto     
    also have " = c *C (xS'. v x *C x)"
      by (metis (mono_tags, lifting) complex_vector.scale_left_commute scaleC_right.sum sum.cong)
    finally have "0 = c *C (xS'. v x *C x)".
    hence "(xS'. v x *C x) = 0"
      using a3 by auto
    hence "v (inverse c *C y) = 0"
      using ‹inverse c *C y  S' ‹finite S' S'  B a1
        complex_vector.independentD
      by blast 
    thus "u y = 0"
      unfolding v_def
      by (simp add: a3) 
  qed
  thus ?thesis
    using complex_vector.dependent_explicit
    by (simp add: complex_vector.dependent_explicit ) 
qed

subsection ‹Antilinear maps and friends›

locale antilinear = additive f for f :: "'a::complex_vector  'b::complex_vector" +
  assumes scaleC: "f (scaleC r x) = cnj r *C f x"

sublocale antilinear  linear
proof (rule linearI)
  show "f (b1 + b2) = f b1 + f b2"
    for b1 :: 'a
      and b2 :: 'a
    by (simp add: add)    
  show "f (r *R b) = r *R f b"
    for r :: real
      and b :: 'a
    unfolding scaleR_scaleC by (subst scaleC, simp)  
qed

lemma antilinear_imp_scaleC:
  fixes D :: "complex  'a::complex_vector"
  assumes "antilinear D"
  obtains d where "D = (λx. cnj x *C d)"
proof -
  interpret clinear "D o cnj"
    apply standard apply auto
     apply (simp add: additive.add assms antilinear.axioms(1))
    using assms antilinear.scaleC by fastforce
  obtain d where "D o cnj = (λx. x *C d)"
    using clinear_axioms complex_vector.linear_imp_scale by blast
  then have D = (λx. cnj x *C d)
    by (metis comp_apply complex_cnj_cnj)
  then show ?thesis
    by (rule that)
qed

corollary complex_antilinearD:
  fixes f :: "complex  complex"
  assumes "antilinear f" obtains c where "f = (λx. c * cnj x)"
  by (rule antilinear_imp_scaleC [OF assms]) (force simp: scaleC_co