A Fully Verified Executable LTL Model Checker

Javier Esparza, Peter Lammich, René Neumann, Tobias Nipkow, Alexander Schimpf and Jan-Georg Smaus

28 May 2014

Abstract

We present an LTL model checker whose code has been completely verified using the Isabelle theorem prover. The checker consists of over 4000 lines of ML code. The code is produced using the Isabelle Refinement Framework, which allows us to split its correctness proof into (1) the proof of an abstract version of the checker, consisting of a few hundred lines of ``formalized pseudocode'', and (2) a verified refinement step in which mathematical sets and other abstract structures are replaced by implementations of efficient structures like red-black trees and functional arrays. This leads to a checker that, while still slower than unverified checkers, can already be used as a trusted reference implementation against which advanced implementations can be tested.

An early version of this model checker is described in the CAV 2013 paper with the same title.

BSD License

Depends On

Topics

Theories