Cardinality of Set Partitions

Lukas Bulwahn

12 December 2015


The theory's main theorem states that the cardinality of set partitions of size k on a carrier set of size n is expressed by Stirling numbers of the second kind. In Isabelle, Stirling numbers of the second kind are defined in the AFP entry `Discrete Summation` through their well-known recurrence relation. The main theorem relates them to the alternative definition as cardinality of set partitions. The proof follows the simple and short explanation in Richard P. Stanley's `Enumerative Combinatorics: Volume 1` and Wikipedia, and unravels the full details and implicit reasoning steps of these explanations.
BSD License

Depends On

Used by


Related Entries